Immunization of horses with Ebola virus resulted in the production of specific virus-neutralizing antibody with maximum titres at 28-42 days. Repeated cycles of immunization led to a rise in antibody titres to 1:4096.

Download full-text PDF

Source

Publication Analysis

Top Keywords

[the isolation
4
isolation hyperimmune
4
hyperimmune horse
4
horse serum
4
serum ebola
4
ebola virus]
4
virus] immunization
4
immunization horses
4
horses ebola
4
ebola virus
4

Similar Publications

Introduction: Since the dawn of the new millennium, Candida species have been increasingly implicated as a cause of both healthcare-associated as well as opportunistic yeast infections, due to the widespread use of indwelling medical devices, total parenteral nutrition, systemic corticosteroids, cytotoxic chemotherapy, and broad-spectrum antibiotics. Candida tropicalis is a pathogenic Candida species associated with considerable morbidity, mortality, and drug resistance issues on a global scale.

Methodology: We report a case of a 43-year-old man who was admitted to our hospital for further management of severe coronavirus disease 2019 (COVID-19) pneumonia.

View Article and Find Full Text PDF

Introduction: Significant challenges to implementing international health regulations (IHR) at points of entry (PoEs) have been highlighted by the coronavirus disease 2019 (COVID-19) pandemic. Better assessment of the capacities of the PoEs may promote focused interventions. This study aimed to assess the capacities and practices at PoEs.

View Article and Find Full Text PDF

Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.

View Article and Find Full Text PDF

Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.

View Article and Find Full Text PDF

Streptococcus dysgalactiae (S. dysgalactiae ) is a common pathogen of humans and various animals. However, the phylogenetic position of animal S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!