Ca2+ triggers premature inactivation of the cdc2 protein kinase in permeabilized sea urchin embryos.

Proc Natl Acad Sci U S A

Laboratory of Theoretical and Physical Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892.

Published: June 1994

Exit from mitosis requires inactivation of the cyclin B-p34cdc2 protein kinase complex. Since increased cytosolic Ca2+ has been implicated as a potential trigger of mitotic progression, we directly tested the possibility that Ca2+ triggers the pathway responsible for inactivating the cdc2 kinase, using sea urchin embryos permeabilized at various stages of the cell cycle. In cells permeabilized during late interphase and prophase, micromolar Ca2+ induced premature inactivation of the cdc2 kinase without affecting the absolute amount of p34cdc2 protein. Inactivation was selective for the cdc2 kinase, as elevated Ca2+ had no effect on cAMP-dependent protein kinase activity. Premature cdc2 kinase inactivation did not require cyclin B destruction, but did coincide with the dissociation of cyclin B-p34cdc2 complexes. In cells permeabilized during prometaphase and metaphase, cdc2 kinase inactivation was Ca(2+)-independent, presumably because at these later times the inactivating pathway had been enabled prior to permeabilization. This work provides evidence that Ca2+ is the physiological trigger enabling cdc2 kinase inactivation during mitosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC44161PMC
http://dx.doi.org/10.1073/pnas.91.13.6176DOI Listing

Publication Analysis

Top Keywords

cdc2 kinase
24
protein kinase
12
kinase inactivation
12
kinase
9
ca2+ triggers
8
premature inactivation
8
inactivation cdc2
8
sea urchin
8
urchin embryos
8
cyclin b-p34cdc2
8

Similar Publications

Phosphorylation of substrates by cyclin-dependent kinases (CDKs) is the driving force of cell cycle progression. Several CDK-activating cyclins are involved, yet how they contribute to substrate specificity is still poorly understood. Here, we discover that a positively charged pocket in cyclin B1, which is exclusively conserved within B-type cyclins and binds phosphorylated serine- or threonine-residues, is essential for correct execution of mitosis.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is a prevalent malignancy worldwide, associated with significant morbidity and mortality. Cyclin-dependent kinase 1 (CDK1) plays a crucial role in cell cycle regulation and has been implicated in various cancers. This study aimed to evaluate the prognostic value of CDK1 in CRC and to identify traditional Chinese medicines (TCM) that can target CDK1 as potential treatments for CRC.

View Article and Find Full Text PDF

Autosomal dominant CDK13-related disease is characterized by congenital heart defects, dysmorphic facial features, and intellectual developmental disorder (CHDFIDD). Heterozygous pathogenic variants, particularly missense variants in the kinase domain, have previously been described as disease causing. Using the determination of a methylation pattern and comparison with an established episignature, we reveal the first hypomorphic variant in the kinase domain of CDK13, leading to a never before described autosomal recessive form of CHDFIDD in a boy with characteristic features.

View Article and Find Full Text PDF

Background: Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adult, characterized by uncontrolled cell proliferation and strong aggressiveness. Previous studies have found that cyclin-dependent kinase 1(CDK1) are related to tumor growth and metastasis. However, the role of CDK1 in DLBCL is exclusive.

View Article and Find Full Text PDF

The prevalence of breast cancer (BRCA) is notable in the female population, being a commonly diagnosed malignancy, where the management of copper levels is crucial for treatment success. This research aims to explore the influence of copper homeostasis on BRCA therapy, with a specific focus on the role of Cyclin-Dependent Kinase 1 (CDK1) and its relationship to copper regulation. A novel thermosensitive hydrogel incorporating nanoparticles (NPs) was engineered to synergize with the chemotherapy drug vincristine (VCR) in inhibiting tumor growth and metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!