The change in tissue PO2 in response to an increased inspired O2 challenge may be related to the state of cellular oxygenation, and hence the adequacy of resuscitation. To test this hypothesis, we measured tissue PO2 during inspired O2 challenges in 29 injured patients during acute resuscitation or intensive care unit monitoring. The O2 challenge test had 100% sensitivity and specificity in detecting flow-dependent O2 consumption in invasively monitored patients in the intensive care unit. During acute resuscitation, 60% of patients had negative initial O2 challenge test results, indicating that flow-dependent O2 consumption might have been present. Of nine such patients, five had subsequent positive O2 challenge test results after fluid resuscitation, indicating successful resuscitation. Four patients (27% of acute resuscitations), however, had repeatedly negative findings, possibly indicating persistent inadequate cellular oxygenation despite fluid resuscitation. Other commonly measured variables did not differentiate these patients. Monitoring of tissue PO2 during an inspired O2 challenge may be a useful test for determining the adequacy of resuscitation from hypovolemic shock.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00005373-199406000-00016 | DOI Listing |
JMIR Res Protoc
January 2025
Division of Services and Interventions Research, National Institute of Mental Health, Bethesda, MD, United States.
Background: Although substantial progress has been made in establishing evidence-based psychosocial clinical interventions and implementation strategies for mental health, translating research into practice-particularly in more accessible, community settings-has been slow.
Objective: This protocol outlines the renewal of the National Institute of Mental Health-funded University of Washington Advanced Laboratories for Accelerating the Reach and Impact of Treatments for Youth and Adults with Mental Illness Center, which draws from human-centered design (HCD) and implementation science to improve clinical interventions and implementation strategies. The Center's second round of funding (2023-2028) focuses on using the Discover, Design and Build, and Test (DDBT) framework to address 3 priority clinical intervention and implementation strategy mechanisms (ie, usability, engagement, and appropriateness), which we identified as challenges to implementation and scalability during the first iteration of the center.
Clin Cancer Res
January 2025
ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra, India.
Purpose: Identifying therapeutic targets for Signet Ring Cell Carcinoma (SRCC) of the colon and rectum is a clinical challenge due to the lack of Patient-Derived Organoids (PDO) or Xenografts (PDX). We present a robust method to establish PDO and PDX models to answer address this unmet need. We demonstrate that these models identify novel therapeutic strategies targeting therapy resistance and peritoneal metastasis.
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.
Hong-Ou-Mandel (HOM) interference is the foundation of quantum optics to test the degree of indistinguishability of two incoming photons, playing a key role in quantum communication, sensing, and photonic quantum computing. Realizing high-visibility HOM interference with massively parallel optical channels is challenging due to the lack of available natural optical references for aligning independent arrayed laser pairs. Here, we demonstrate 50 parallel comb-teeth pairs of continuous-wave weak coherent photons HOM interference using two independently frequency post-aligned soliton microcombs (SMCs), achieving an average fringe visibility over 46%.
View Article and Find Full Text PDFPLoS One
January 2025
European IPF/ILD Registry and Biobank (eurIPFreg/bank, eurILDreg/bank), Giessen, Germany.
Background And Aims: Predicting progression and prognosis in Interstitial Lung Diseases (ILD), especially Idiopathic Pulmonary Fibrosis (IPF) and Progressive Pulmonary Fibrosis (PPF), remains a challenge. Integrating patient-centered measurements is essential for earlier and safer detection of disease progression. Home monitoring through e-health technologies, such as spirometry and oximetry connected to smartphone applications, holds promise for early detection of ILD progression or acute exacerbations, enabling timely therapeutic interventions.
View Article and Find Full Text PDFNanoscale
January 2025
Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Bhubaneswar-751 030, Odisha, India.
Titanium (Ti)-based MOFs are promising materials known for their porosity, stability, diverse valence states, and a lower conduction band (CB) than Zr-MOFs. These features support stable ligand-to-metal charge transfer (LMCT) transitions under photoirradiation, enhancing photocatalytic performance. However, Ti-MOF structures remain a challenge owing to the highly volatile and hydrophilic nature of ionic Ti precursors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!