Particular regions of the X and Y chromosomes share DNA sequence homology to the extent that cross hybridisation occurs. Thus, chromosome painting with a whole Y chromosome probe consistently results in fluorescence on specific regions of the X chromosome as well as the complete Y chromosome. This phenomenon has been exploited to elucidate the structure of unusual X chromosome rearrangements, without Y involvement, in two females.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1049743PMC
http://dx.doi.org/10.1136/jmg.31.3.206DOI Listing

Publication Analysis

Top Keywords

chromosome painting
8
chromosome
7
elucidation structural
4
structural abnormalities
4
abnormalities chromosome
4
chromosome fluorescence
4
fluorescence situ
4
situ hybridisation
4
hybridisation chromosome
4
painting probe
4

Similar Publications

Galliformes and Anseriformes are two branches of the Galloanserae group, basal to other Neognathae. In contrast to Galliformes, Anseriformes have not been thoroughly researched by cytogenetic methods. This report is focused on representatives of Anseriformes and the evolution of their chromosome sets.

View Article and Find Full Text PDF

Meiotic crossovers revealed by differential visualization of homologous chromosomes using enhanced haplotype oligo-painting in cucumber.

Plant Biotechnol J

December 2024

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.

The interaction dynamics of homologous chromosomes during meiosis, such as recognition, pairing, synapsis, recombination, and segregation are vital for species fertility and genetic diversity within populations. Meiotic crossover (CO), a prominent feature of meiosis, ensures the faithful segregation of homologous chromosomes and enriches genetic diversity within a population. Nevertheless, visually distinguishing homologous chromosomes and COs remains an intractable challenge in cytological studies, particularly in non-model or plants with small genomes, limiting insights into meiotic dynamics.

View Article and Find Full Text PDF

Investigation of Astyanax mexicanus (Characiformes, Characidae) chromosome 1 structure reveals unmapped sequences and suggests conserved evolution.

PLoS One

November 2024

Departamento de Biologia Estrutural, Molecular e Genética, Programa de Pós-Graduação em Biologia Evolutiva, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil.

Article Synopsis
  • - The Mexican tetra, Astyanax mexicanus, has evolved unique traits like pigment loss due to natural selection in cave habitats and serves as an important species for studying evolution, with a chromosome count of 2n = 50.
  • - Researchers utilized advanced techniques including whole chromosome isolation and sequencing to analyze the structure of a specific chromosome (chromosome 1) in A. mexicanus, contributing to the understanding of its genetic makeup.
  • - Findings showed strong conservation of chromosome features across related species, suggesting a shared evolutionary origin, and the gathered data can be useful for comparative studies in other fish species of the same family.
View Article and Find Full Text PDF

Whole-chromosome oligo-painting in licorice unveils interspecific chromosomal evolutionary relationships and possible origin of triploid genome species.

Plant J

December 2024

Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.

Article Synopsis
  • Licorice, specifically from the Glycyrrhiza genus, has a long history as a medicinal plant, but its genetic and evolutionary complexities are not fully understood.
  • Researchers developed whole-chromosome painting probes to analyze the chromosomes of licorice and found that the chromosomal structures have remained highly conserved over millions of years, with no significant rearrangements between species.
  • The study also identified a new triploid seed of G. glandulosa in China, indicating a polyploid evolutionary pathway, which challenges previous ideas that only diploid forms existed in nature.
View Article and Find Full Text PDF

Graphite: painting genomes using a colored de Bruijn graph.

NAR Genom Bioinform

September 2024

Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.

The recent growth of microbial sequence data allows comparisons at unprecedented scales, enabling the tracking of strains, mobile genetic elements, or genes. Querying a genome against a large reference database can easily yield thousands of matches that are tedious to interpret and pose computational challenges. We developed Graphite that uses a colored de Bruijn graph (cDBG) to paint query genomes, selecting the local best matches along the full query length.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!