1. The present study was designed to determine the effect of sleep on the tonic output to respiratory muscle and on the level of chemical respiratory stimulation required to produce rhythmic respiratory output. 2. Chronically implanted electrodes recorded expiratory (triangularis sterni) and inspiratory (diaphragm and parasternal intercostal) electromyographic (EMG) activities in three trained dogs during wakefulness and sleep. The dogs were mechanically hyperventilated via an endotracheal tube inserted into a permanent tracheostomy. During the studies, a cold block of the cervical vagus nerves was maintained to avoid the complicating effects of vagal inputs on respiratory drive and rhythm. 3. During wakefulness, steady-state hypocapnia (partial pressure of CO2, PCO2 = 30 mmHg) abolished inspiratory EMG activity, resulting in apnoea, but the expiratory muscle became tonically active. Compared to wakefulness, the level of the tonic expiratory EMG activity was decreased in non-REM (non-rapid eye movement) sleep (median decrease = 34%, P = 0.005) and was further decreased in REM sleep (median decrease = 78%, P < 0.0001). During REM sleep, the tonic expiratory EMG activity was highly variable (mean coefficient of variation = 39% compared to 7% awake, P < 0.0001) and in some periods of REM, bursts of inspiratory EMG activity and active breathing movements were observed despite the presence of hypocapnia. 4. During constant mechanical hyperventilation, progressive increases in arterial PCO2 (in hyperoxia) were produced by rebreathing. Measurement of the CO2 threshold for the onset of spontaneous breathing showed that this threshold was not different between wakefulness and non-REM sleep (mean difference = 0.1 mmHg from paired observations, 95% confidence interval for the difference = -1.0 to +1.1 mmHg, P = 0.898). 5. The results show that sleep reduces the tonic output to respiratory muscles but does not increase the CO2 threshold for the generation of rhythmic respiratory output. These observations suggest that changes in the tonic drives to the respiratory motoneurones may be a principal mechanism by which changes in sleep-wake states produce changes in respiratory output.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1160342 | PMC |
http://dx.doi.org/10.1113/jphysiol.1994.sp020042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!