Proline iminopeptidase (PepIP) is a major peptidase in Lactobacillus delbrueckii subsp. bularicus CNRZ397, encoded by the pepIP gene. Amplification and expression of this gene in Escherichia coli K12 resulted in a very high level of enzyme production. Moreover, export into the E. coli periplasm of 45% of PepIP activity allowed us to purify the enzyme easily by a single ion-exchange chromatography step. PepIP is a trimer of Mr 100000 , composed of three identical subunits. In the presence of 0.1% BSA, PepIP activity was optimal at pH 6-7 and stable at temperatures below 40 degrees C. The enzyme was strongly inhibited by 3,4-dichloroisocoumarin, a serine protease inhibitor, by bestatin and by heavy metal ions. It was also inactivated by p-chloromercuribenzoate, but was reactivated by adding dithiothreitol. PepIP is characterized by a high specificity towards di- or tripeptides with proline at the NH2-terminal position, but is not able to hydrolyse longer peptides, or peptides with hydroxyproline at the NH2-end. The NH2-terminal amino acid sequence of the purified PepIP corresponds to the amino acid sequence deduced from the nucleotide sequence of the pepIP gene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/00221287-140-3-537 | DOI Listing |
BMC Pediatr
October 2024
Department of Cardiology, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China.
BACKGROUND X-PROLYL AMINOPEPTIDASE 3: (XPNPEP3) mutations are known to cause nephronophthisis-like nephropathy-1 (NPHPL1), a rare autosomal-recessive kidney disease characterized by progressive kidney failure and cystic kidney disease in childhood. The full phenotypic spectrum associated with mutations in XPNPEP3 is not fully elucidated. CASE PRESENTATION: A 13-year-old Chinese female patient with intellectual disability presented with a 2-year history of convulsions and fatigue, with a recent episode of swelling, breathlessness, and nocturnal dyspnea lasting 10 days.
View Article and Find Full Text PDFChem Asian J
May 2024
State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
Medicine (Baltimore)
February 2024
Department of Gynecology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, P.R. China.
J Cell Physiol
September 2023
Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan.
Skeletal muscle maintenance depends largely on muscle stem cells (satellite cells) that supply myoblasts required for muscle regeneration and growth. The ubiquitin-proteasome system is the major intracellular protein degradation pathway. We previously reported that proteasome dysfunction in skeletal muscle significantly impairs muscle growth and development.
View Article and Find Full Text PDFPlant Environ Interact
February 2023
State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences Henan University Kaifeng China.
Through crosstalk, FLAGELLIN SENSITIVE 2 (FLS2) and RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) are involved in regulating the homeostasis of cellular reactive oxygen species (ROS) and are linked to the metabolic response of plants toward both biotic and abiotic stress. In the present study, we examined the metabolome of seedlings under drought and salt conditions to better understand the potential role of FLS2 and RBOHD-dependent signaling in the regulation of abiotic stress response. We identified common metabolites and genes that are regulated by FLS2 and RBOHD, and are involved in the response to drought and salt stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!