The proline iminopeptidase (PepIP) of Lactobacillus delbrueckii subsp. bulgaricus is a major peptidase located in the cell envelope. Its structural gene (pepIP) has been cloned into pUC18 and expressed at a very high level in Escherichia coli to give a PepIP activity 15,000-fold higher than that found in L. delbrueckii subsp. bulgaricus. The nucleotide sequence of the pepIP gene revealed an open reading frame of 295 codons encoding a protein with a predicted M(r) of 33,006, which is consistent with the apparent size of the gene product. The amino acid sequence of PepIP shows significant homology with those of other hydrolases involved in the degradation of cyclic compounds. In particular, there is a region which includes an identified catalytic site containing a serine residue and a motif specific for the active sites of prolyloligopeptidases (Gly-X-Ser-X-Gly-Gly). The PepIP opens a new way for supplying cells with proline using the peptides resulting from the proteolytic degradation of caseins.

Download full-text PDF

Source
http://dx.doi.org/10.1099/00221287-140-3-527DOI Listing

Publication Analysis

Top Keywords

delbrueckii subsp
12
subsp bulgaricus
12
pepip gene
8
proline iminopeptidase
8
lactobacillus delbrueckii
8
sequence pepip
8
pepip
7
cloning sequencing
4
sequencing characterization
4
characterization pepip
4

Similar Publications

Background: Osteoarthritis (OA) is a chronic condition characterized by joint pain and disability, driven by excessive oxidative stress and inflammatory cytokine production in chondrocytes, resulting in cell death and cartilage matrix breakdown. Our previous study showed that in monosodium iodoacetate (MIA)-induced OA rats, oral administration of heat-killed subsp. 557 (LDL557) could significantly decrease OA progression.

View Article and Find Full Text PDF

Background/objectives: Functional probiotics, particularly subsp. CKDB001, have shown potential as a therapeutic option for metabolic dysfunction-associated steatotic liver disease (MASLD). However, their effects have not been confirmed in in vivo systems.

View Article and Find Full Text PDF

Effect of Genetic Polymorphism of Bovine β-Casein Variants (A1 and A2) on Yoghurt Characteristics.

Foods

December 2024

Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO (CERTA-UAB), Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (Cerdanyola del Vallès), 08193 Barcelona, Spain.

The present study aims to evaluate the physicochemical and sensory characteristics of A2 yoghurts (made with A2A2 β-CN milk), in comparison with Control yoghurts (elaborated from conventional milk, a mixture of A1 and A2 β-CN milk). The pH, acidity, water-holding capacity, spontaneous syneresis, firmness and color of yoghurts were monitored during their cold storage (4 °C) for 35 days. Two independent sensory tests (with expert judges and consumers) were also performed.

View Article and Find Full Text PDF

The present study aimed to evaluate the effects of incorporating different concentrations (1% and 2%) of Malvaviscus arboreus flower (FE) and leaf (LE) extracts as functional ingredients in goat milk yogurt. This study analyzed the impact of these formulations (YFE1%, YFE2%, YLE1%, and YLE2%) on the physicochemical, bioactive, antioxidant, rheological, textural, and sensory properties of goat yogurt over a 28-day storage period. Including FE and LE extracts significantly enhanced the yogurt's antioxidant activity, reaching up to 10.

View Article and Find Full Text PDF

The increase in food production is accompanied by an increase in waste, particularly agricultural by-products from cultivation and processing. These residues are referred to as agricultural by-products. To address this issue, biotechnological processes can be used to create new applications for these by-products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!