Family studies and tumor analyses have combined to indicate that neurofibromatosis 2 (NF2), a disorder characterized by multiple benign tumors of the nervous system, and sporadic non-inherited forms of the same tumor types are both caused by inactivation of a tumor suppressor gene located in 22q12. Recently, the gene encoding merlin, a novel member of a family of cytoskeleton-associated proteins, was identified as the NF2 tumor suppressor. To facilitate the search for merlin mutations, we have defined the exon-intron boundaries for all 17 NF2 exons, including one subject to alternative splicing. We have developed polymerase chain reaction assays to amplify each exon from genomic DNA, and used these assays to perform single-strand conformation polymorphism analysis of DNA from 30 sporadic and eight NF2-derived schwannomas, the hallmark tumor type in this disorder. Of a maximum of 60 alleles scanned, 32 showed mutations affecting expression of the merlin protein. Thirty of these mutations are predicted to lead to a truncated protein due to frameshift, creation of a stop codon, or interference with normal splicing, while two are missense mutations. Thus, inactivation of merlin is a common feature underlying both inherited and sporadic forms of schwannoma.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/3.3.413DOI Listing

Publication Analysis

Top Keywords

tumor suppressor
8
tumor
5
exon scanning
4
scanning mutation
4
nf2
4
mutation nf2
4
nf2 gene
4
gene schwannomas
4
schwannomas family
4
family studies
4

Similar Publications

INhibitor of Growth (ING1-5) proteins are epigenetic readers that target histone acetyltransferase (HAT) or histone deacetylase (HDAC) complexes to the H3K4Me3 mark of active transcription. ING5 targets Moz/Morf and HBO1 HAT complexes that alter acetylation of H3 and H4 core histones, affecting gene expression. Previous experiments in vitro indicated that ING5 functions to maintain stem cell character in normal and in cancer stem cells.

View Article and Find Full Text PDF

This study investigated whether the neddylation inhibitor MLN4924 induces aberrant DNA methylation patterns in acute myeloid leukemia and contributes to the reactivation of tumor suppressor genes. DNA methylation profiles of Kasumi-1 and KU812 acute myeloid leukemia cell lines before and after MLN4924 treatment were generated using the 850K Methylation BeadChip. RNA sequencing was used to obtain transcriptomic profiles of Kasumi-1 cells.

View Article and Find Full Text PDF

Proto-oncogene KRAS, GTPase (KRAS) is one of the most intensively studied oncogenes in cancer research. Although several mouse models allow for regulated expression of mutant KRAS, selective isolation and analysis of transforming or tumor cells that produce the KRAS oncogene remains a challenge. In our study, we present a knock-in model of oncogenic variant KRAS that enables the "activation" of KRAS expression together with production of red fluorescent protein tdTomato.

View Article and Find Full Text PDF

Purpose: Malignant peripheral nerve sheath tumor (MPNST) is an aggressive soft tissue sarcoma that develops sporadically or in Neurofibromatosis type 1 patients. Its development is marked by the inactivation of specific tumor suppressor genes (TSGs): NF1, CDKN2A and SUZ12EED (Polycomb Repressor Complex 2). Each TSG loss can be targeted by particular drug inhibitors and we aimed to systematically combine these inhibitors, guided by TSG inactivation status, to test their precision medicine potential for MPNSTs.

View Article and Find Full Text PDF

Epithelial cells can become polyploid upon tissue injury, but mechanosensitive cues that trigger this state are poorly understood. Using an Madin Darby Canine Kidney (MDCK) cell knock-out/reconstitution system, we show that α-catenin mutants that alter force-sensitive binding to F-actin or middle (M)-domain promote cytokinesis failure and binucleation, particularly near epithelial wound-fronts. We identified Leucine Zipper Tumor Suppressor 2 (LZTS2), a factor previously implicated in abscission, as a conformation sensitive proximity partner of α-catenin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!