Extracellular adenosine triphosphate (eATP) has been suggested to play a role in lymphocyte-induced tumor destruction. We now provide evidence that a protein responsible for ATP synthesis in mitochondria may also play a physiologic role in major histocompatibility complex-independent, lymphocyte-mediated cytotoxicity. A 51.5-kD protein (p51.5) bearing structural and immunologic characteristics of the beta subunit of H+ transporting ATP synthase (E.C. 3.6.1.34, beta-H+ATPase, published molecular mass of 51.6 kD) was detected on the plasma membrane of three different human tumor cell lines studied. NH2-terminal amino acid sequence analysis of purified p51.5 from K562 tumor cells revealed 100% homology of 16 residues identified in the first 21 positions to the known sequence of human mitochondrial beta-H+ ATPase. Antibody directed against a 21-mer peptide in the ATP binding region of beta-H+ ATPase (anti-beta) reacted with only one band on Western blots of whole tumor extracts and tumor membrane extracts suggesting that the antiserum reacts with a single species of protein. Anti-beta reacted with the cell membranes of tumor cells as determined by fluorescence-activated flow cytometry and immunoprecipitated a 51.5-kD protein from surface-labeled neoplastic cells (but not human erythrocytes and lymphocytes). Purified p51.5 bound to human lymphocytes and inhibited natural killer (NK) cell-mediated cytotoxicity. Furthermore, anti-beta treatment of the K562 and A549 tumor cell lines inhibited NK (by > 95%) and interleukin 2-activated killer (LAK) cell (by 75%) cytotoxicity, respectively. Soluble p51.5 upon binding to lymphocytes retained its reactivity to anti-beta suggesting that the ATP binding domain and the lymphocyte-receptor binding domain reside in distinct regions of the ligand. These results suggest that beta-H+ ATPase or a nearly identical molecule is an important ligand in the effector phase (rather than the recognition phase) of a cytolytic pathway used by naive NK and LAK cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191542PMC
http://dx.doi.org/10.1084/jem.180.1.273DOI Listing

Publication Analysis

Top Keywords

tumor cell
12
cell lines
12
beta-h+ atpase
12
lymphocyte-mediated cytotoxicity
8
beta subunit
8
subunit transporting
8
transporting atp
8
atp synthase
8
tumor
8
515-kd protein
8

Similar Publications

Targeting RNA splicing modulation: new perspectives for anticancer strategy?

J Exp Clin Cancer Res

January 2025

Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China.

The excision of introns from pre-mRNA is a crucial process in the expression of the majority of genes. Alternative splicing allows a single gene to generate diverse mRNA and protein products. Aberrant RNA splicing is recognized as a molecular characteristic present in almost all types of tumors.

View Article and Find Full Text PDF

Background: Transarterial chemoembolization (TACE) is the first-line therapeutic option for patients with intermediate-stage hepatocellular carcinoma (HCC). Tumor neovascularization allows tumor growth and may facilitate the release of circulating tumor cells (CTCs) to the bloodstream after TACE. We investigated the relationship between early release of CTCs and radiological response after TACE.

View Article and Find Full Text PDF

Background: The progression of bladder cancer (BC) from non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) significantly increases disease severity. Although the tumor microenvironment (TME) plays a pivotal role in this process, the heterogeneity of tumor cells and TME components remains underexplored.

Methods: We characterized the transcriptomes of single cells from 11 BC samples, including 4 NMIBC, 4 MIBC, and 3 adjacent normal tissues.

View Article and Find Full Text PDF

Osteosarcoma (OS) is a commonly observed malignant tumor in orthopedics that has a very poor prognosis. The endosomal sorting complex required for transport (ESCRT) is important for the development and progression of cancer and may be a significant target for cancer therapy. First, we built a prognostic signature using 7 ESCRT-related genes (ERGs) to predict OS patient prognosis.

View Article and Find Full Text PDF

Background: HER2-targeted therapies have revolutionized the treatment of HER2-positive breast cancer patients, leading to significant improvements in tumor response rates and survival. However, resistance and incomplete response remain considerable challenges. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is a novel therapeutic strategy for the management of dyslipidemia by enhancing the clearance of low-density lipoprotein cholesterol receptors, however recent evidence also shows links between PCSK9 and cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!