In the cerebral cortex, local circuit neurons provide critical inhibitory control over the activity of pyramidal neurons, the major class of excitatory efferent cortical cells. The calcium-binding proteins, calretinin, calbindin, and parvalbumin, are expressed in a variety of cortical local circuit neurons. However, in the primate prefrontal cortex, relatively little is known, especially with regard to calretinin, about the specific classes or distribution of local circuit neurons that contain these calcium-binding proteins. In this study, we used immunohistochemical techniques to characterize and compare the morphological features and distribution in macaque monkey prefrontal cortex of local circuit neurons that contain each of these calcium-binding proteins. On the basis of the axonal features of the labeled neurons, and correlations with previous Golgi studies, calretinin appeared to be present in double-bouquet neurons, calbindin in neurogliaform neurons and Martinotti cells, and parvalbumin in chandelier and wide arbor (basket) neurons. Calretinin was also found in other cell populations, such as a distinctive group of large neurons in the infragranular layers, but it was not possible to assign these neurons to a known cell class. In addition, although the animals studied were adults, immunoreactivity for both calretinin and calbindin was found in Cajal-Retzius neurons of layer I. Dual labeling studies confirmed that with the exception of the Cajal-Retzius neurons, each calcium-binding protein was expressed in separate populations of prefrontal cortical neurons. Comparisons of the laminar distributions of the labeled neurons also indicated that these calcium-binding proteins were segregated into discrete neuronal populations. Calretinin-positive neurons were present in greatest density in deep layer I and layer II, calbindin-immunoreactive cells were most dense in layers II-superficial III, and parvalbumin-containing neurons were present in greatest density in the middle cortical layers. In addition, the relative density of calretinin-labeled neurons was approximately twice that of the calbindin- and parvalbumin-positive neurons. However, within each group of labeled neurons, their laminar distribution and relative density did not differ substantially across regions of the prefrontal cortex. These findings demonstrate that calretinin, calbindin, and parvalbumin are markers of separate populations of local circuit neurons in monkey prefrontal cortex, and that they may be useful tools in unraveling the intrinsic inhibitory circuitry of the primate prefrontal cortex in but normal and disease states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.903410109 | DOI Listing |
Front Rehabil Sci
January 2025
Department of Life Sciences, Health, and Health Professions, Link Campus University, Rome, Italy.
Purpose: The purpose of this case was to investigate objectively and quantitatively the effects of the application of repeated focal muscle vibration (fMV) associated with neurocognitive exercise on a 46-year-old patient with spastic paraparesis secondary to the surgical removal of a C5-C6 ependymoma.
Methods: We have evaluated gait parameters, spasticity, and pain with clinical scales. We have applied focal muscle vibration on quadriceps femoris, hamstrings, gastrocnemius, and iliopsoas muscles bilaterally.
J Neural Eng
January 2025
Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213-3815, UNITED STATES.
Objective: Transcranial electrical stimulation (TES) is an effective technique to modulate brain activity and treat diseases. However, TES is primarily used to stimulate superficial brain regions and is unable to reach deeper targets. The spread of injected currents in the head is affected by volume conduction and the additional spreading of currents as they move through head layers with different conductivities, as is discussed in [1].
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China.
Two-dimensional (2D) organic-inorganic halide perovskites are promising sensitive materials for optoelectronic applications due to their strong light-matter interactions, layered structure, long carrier lifetime and diffusion length. However, a high gate bias is indispensable for perovskite-based phototransistors to optimize detection performances, since ion migration seriously screens the gate electric field and the deposition process introduces intrinsic defects, which induces severe leakages and large power dissipation. In this work, an ultrasensitive phototransistor based on the (PEA)SnI perovskite and the Al:HfO ferroelectric layer is meticulously studied, working without an external gate voltage.
View Article and Find Full Text PDFChemphyschem
January 2025
Institute of Molecular Science Marseille, Département de chimie, FRANCE.
Electron delocalization is studied in the ground singlet and first excited triplet states of azulene-containing helicenes. After showing that the compounds we study can be synthesized, we show that they exhibit a charge separation in the ground state, which does not appear in their triplet excited state. Then, magnetically induced properties (IMS3D and ACID) and electron density decomposition methods (EDDB) are used to rationalize aromaticity in these systems.
View Article and Find Full Text PDFFront Neurol
January 2025
Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.
Introduction: The brainstem vestibular nuclei neurons receive synaptic inputs from inner ear acceleration-sensing hair cells, cerebellar output neurons, and ascending signals from spinal proprioceptive-related neurons. The lateral (LVST) and medial (MVST) vestibulospinal (VS) tracts convey their coded signals to the spinal circuits to rapidly counter externally imposed perturbations to facilitate stability and provide a framework for self-generated head movements.
Methods: The present study describes the morphological characteristics of intraaxonally recorded and labeled VS neurons monosynaptically connected to the 8th nerve.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!