Human lung impedance from spontaneous breathing frequencies to 32 Hz.

J Appl Physiol (1985)

Laboratori de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Spain.

Published: March 1994

Lung impedance (ZL) was measured from 0.1875 to 32 Hz in spontaneously breathing healthy subjects by spectral analysis of the pressure and flow signals generated simultaneously by the muscular generator of breathing and by a forced oscillation system. This method did not require cooperation from the subject to perform panting or special ventilatory maneuvers and therefore allowed us to analyze the frequency dependence of lung resistance, reactance, and elastance (-2 pi.frequency.reactance) at the physiological conditions of normal breathing. Resistance and elastance parameters were also computed by multiple linear regression of the time-domain pressure and flow data on a simple resistance-elastance model. Resistances and elastances computed at the breathing frequency by spectral analysis and by multiple linear regression were similar (nonsignificant differences < 4 and 10%, respectively). The results obtained when comparing ZL from the breathing component (0.1875-0.75 Hz) of the recorded signals and from the forced oscillation component (2-32 Hz) were fairly consistent. ZL (0.1875-10 Hz) was interpreted in terms of a model consisting of an airway compartment, including a resistance and an inertance, in series with a viscoelastic tissue compartment (J. Hildebrandt. J. Appl. Physiol. 28: 365-372, 1970) characterized by two parameters. The model analysis provided parameter values (resistance 2.49 +/- 0.58 hPa.l-1.s, inertance 1.70 +/- 0.29 Pa.l-1.s2, Hildebrandt parameters 4.87 +/- 2.28 and 0.73 +/- 0.99 hPa/l) consistent with the hypothesis that lung tissue in healthy humans during spontaneous breathing behaves as a viscoelastic structure with a hysteresivity of approximately 0.10.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jappl.1994.76.3.1176DOI Listing

Publication Analysis

Top Keywords

lung impedance
8
spontaneous breathing
8
spectral analysis
8
pressure flow
8
forced oscillation
8
multiple linear
8
linear regression
8
breathing
7
human lung
4
impedance spontaneous
4

Similar Publications

The purpose of this work is to evaluate the feasibility of lung imaging using 3D electrical impedance tomography (EIT) during spontaneous breathing trials (SBTs) in patients with acute hypoxic respiratory failure. EIT is a noninvasive, nonionizing, real-time functional imaging technique, suitable for bedside monitoring in critically ill patients. EIT data were collected in 24 mechanically ventilated patients immediately preceding and during a SBT on two rows of 16 electrodes using a simultaneous multicurrent source EIT system for 3D imaging.

View Article and Find Full Text PDF

Early detection of lung function impairment is crucial. However, the sensitivity of spirometry in detecting early lung function deterioration is limited. In this study, lungs of 3180 healthy participants scheduled for annual health check were screened.

View Article and Find Full Text PDF

Objective: Electrical Impedance Tomography (EIT) is a non-invasive technique used for lung imaging. A significant challenge in EIT is reconstructing images of deeper thoracic regions due to the low sensitivity of boundary voltages to internal conductivity variations. The current injection pattern is decisive as it influences the current path, boundary voltages, and their sensitivity to tissue changes.

View Article and Find Full Text PDF

The purpose of this work is to evaluate the feasibility of lung imaging using 3D electrical impedance tomography (EIT) during spontaneous breathing trials (SBTs) in patients with acute hypoxic respiratory failure. EIT is a noninvasive, nonionizing, real-time functional imaging technique, suitable for bedside monitoring in critically ill patients. EIT data were collected in 24 mechanically ventilated patients immediately preceding and during a SBT on two rows of 16 electrodes using a simultaneous multicurrent source EIT system for 3D imaging.

View Article and Find Full Text PDF

Inhaled ozone induces distinct alterations in pulmonary function in models of acute and episodic exposure in female mice.

Toxicol Sci

January 2025

Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854.

Ozone is an urban air pollutant, known to cause lung injury and altered function. Using established models of acute (0.8 ppm, 3 h) and episodic (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!