Ten families with X-linked dominant CMT neuropathy (CMTX1) were screened for point mutations of the connexin32 (Cx32, GJB1) gene. Two families showed missense mutations, respectively an A-->G transition at amino acid 102 (glutamate to glycine) and a C-->T transition at amino acid 142 (arginine to tryptophan). Three families showed nonsense mutations, respectively a C-->T transition at amino acid 22 (arginine to stop) a G-->T transversion at amino acid 186 (glutamate to stop), and a T-->A transversion at amino acid 217 (cysteine to stop). Five CMTX1 neuropathy families showed no evidence of point mutations of the connexin32 coding sequence. These findings suggest that the CMTX1 neuropathy genotype is heterogeneous or the result of promoter mutations, 3'-untranslated region mutations or exon/intron splice site mutations. Four of the reported mutations created or destroyed restriction enzyme sites: a HaeIII restriction enzyme site was destroyed by the mutation at amino acid position 22, a HpaII site was eliminated at amino acid position 142, a Bfal restriction site was created by the mutation at amino acid 186 and a Ddel restriction site was created by the mutation at amino acid 217. These changes allowed us to test family members for the mutations and observe the segregation of the disease with the mutations.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/3.2.355DOI Listing

Publication Analysis

Top Keywords

amino acid
36
point mutations
12
mutations connexin32
12
transition amino
12
mutation amino
12
mutations
10
amino
9
acid
9
gjb1 gene
8
x-linked dominant
8

Similar Publications

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

Background: Arginine infusion stimulates copeptin secretion, a surrogate marker of arginine vasopressin (AVP), thereby serving as a diagnostic test in the differential diagnosis of suspected AVP deficiency (AVP-D). Yet, the precise mechanism underlying the stimulatory effect of arginine on the vasopressinergic system remains elusive. Arginine plays a significant role in the urea cycle and increases the production of urea.

View Article and Find Full Text PDF

Metabolic profiles of meconium in preeclamptic and normotensive pregnancies.

Metabolomics

January 2025

Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.

Introduction: Preeclampsia (PE) is a common vascular pregnancy disorder affecting maternal and fetal metabolism with severe immediate and long-term consequences in mothers and infants. During pregnancy, metabolites in the maternal circulation pass through the placenta to the fetus. Meconium, a first stool of the neonate, offers a view to maternal and fetoplacental unit metabolism and could add to knowledge on the effects of PE on the fetus and newborn.

View Article and Find Full Text PDF

Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!