The neuropsychological functioning of five men suffering alleged physical, cognitive and behavioural changes following exposure to methylene diphenyl diisocyanate (MDI), an industrial chemical, was investigated in the present study. At the time of assessment, four of the five patients remained symptomatic despite having no contact with MDI for periods ranging from 5 to 9 months. All patients reported experiencing subjective symptoms consisting of respiratory distress, headaches, depression, irritability, forgetfulness, decreased calculating ability, word-finding problems and reduced concentration. While the pattern of neuropsychological deficits varied among the patients, common findings for the group included intact psychomotor, psychosensory, visuographic and language functions accompanied by deceased concentration, mental efficiency, rate of information processing, learning ability and abstract reasoning. All five patients also revealed significant emotional distress on an objective personality measure. In general, the neuropsychological test data support the presence of behavioural and cognitive correlates of CNS injury following exposure to MDI.

Download full-text PDF

Source
http://dx.doi.org/10.3109/02699059409150980DOI Listing

Publication Analysis

Top Keywords

methylene diphenyl
8
diphenyl diisocyanate
8
neuropsychological
4
neuropsychological toxicology
4
toxicology methylene
4
diisocyanate report
4
report cases
4
cases neuropsychological
4
neuropsychological functioning
4
functioning men
4

Similar Publications

RNA binding protein ALYREF regulates ferroptosis to facilitate LUAD growth and metastasis via promoting SLC7A11 mRNA stability.

Sci Rep

January 2025

Department of Lung transplantation and Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China.

Ferroptosis is of great significance in carcinogenesis as it interconnects with a multiplicity of biological processes. Meanwhile, its function and regulatory role in lung cancer remains ambiguous. In this study, we discovered by WB and IHC that ALYREF has a higher expression in lung adenocarcinoma (LUAD) tissues compared with normal ones.

View Article and Find Full Text PDF

Two Transition Metal Coordination Polymers: Potential Adsorbents for Contaminant Removal and Photoluminescent Properties.

J Fluoresc

January 2025

The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, Key Laboratory of Chemistry of New Material of Functional Inorganic Composites, School of Chemical Engineering, Xi'an University, Xi'an, Shaanxi, China.

Methylene blue (MB) contamination has become a significant environmental issue due to its widespread presence in industrial effluents, posing serious threats to ecosystems and human health. As a result, there is an urgent need for the development of novel adsorbent materials that can effectively remove these pollutants from water sources. In this context, the present study focuses on the design and synthesis of two coordination polymers (CPs) containing Zn(II) and Mn(II), namely, {[Mn(L)(tib)]·4HO} (1) and [Zn(L)(3,5-bibp)] (2), using a combined-ligand approach under solvothermal conditions.

View Article and Find Full Text PDF

Design, Synthesis, and Fungicidal Activity of α-Methylene-γ-Butyrolactone Derivatives Bearing a Diphenyl Ether Moiety.

J Agric Food Chem

January 2025

Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.

The γ-butyrolactone scaffold, commonly present in natural products and bioactive compounds, has played a crucial role in the development of novel pesticides. In this study, a series of α-methylene-γ-butyrolactone derivatives containing a diphenyl ether moiety were designed and synthesized using the scaffold splicing strategy. Bioassays revealed that several target compounds demonstrated potent fungicidal activities, particularly against and .

View Article and Find Full Text PDF

In the present work, solvent casting and Pickering emulsion methods are studied to enhance the mechanical properties of polylactic acid (PLA) composites containing surface-modified cellulose nanomaterials. To enhance the compatibility and the adhesion at the interface, cellulose nanocrystal (CNC) was functionalized by 2,4-methylene diphenyl diisocyanate (MDI) and castor oil. Their results demonstrated that the Pickering emulsion method led to better dispersion of CNC in composites, resulting in improved tensile strength, flexibility, and thermal stability (compared with solvent-casted ones).

View Article and Find Full Text PDF

Synthesis, Morphology, and Particle Size Control of Acidic Aqueous Polyurethane Dispersions.

Macromolecules

November 2024

School of Mathematical and Physical Sciences, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.

A range of charge-stabilized aqueous polyurethane (PU) dispersions comprising hard segments formed from hydrogenated methylene diphenyl diisocyanate (HMDI) with dimethylolpropionic acid (DMPA) and ethylenediamine, and soft segments of poly(tetramethylene oxide) of different molecular weights are synthesized. Characterization of the dispersions by mass spectrometry, gel permeation chromatography, small-angle X-ray scattering, atomic force microscopy, and infrared spectroscopy shows that they are composed of PUs self-assembled into spherical particles (primary population) and supramolecular structures formed by hydrogen-bonded HMDI and DMPA acid-rich fragments (secondary population). Analysis of the scattering patterns of the dispersions, using a structural model based on conservation of mass, reveals that the proportion of supramolecular structures increases with DMPA content.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!