Ribonucleases catalyze the hydrolysis of the P-O5' bond in RNA. This reaction occurs in two steps: transphosphorylation of RNA to a 2',3'-cyclic phosphodiester intermediate and hydrolysis of this intermediate to a 3'-phosphomonoester. 31P NMR spectroscopy was used to monitor the accumulation of the 2',3'-cyclic phosphodiester intermediate during the transphosphorylation and hydrolysis reactions catalyzed by various ribonucleases and by small molecules. The intermediate was found to accumulate during catalysis by monomeric bovine pancreatic ribonuclease A (RNase A), a dimer and a trimer of RNase A, bovine seminal ribonuclease, RNase T1, barnase, and RNase 1. These enzymes, which are of widely disparate phylogenetic origin, released rather than hydrolyzed most of the intermediate formed transphosphorylation of RNA. In contrast, the intermediate did not accumulate during catalysis by hydroxide ion or imidazole buffer. In the presence of these small molecules, hydrolysis is faster than transphosphorylation. A trapping experiment was used to assess the throughput of the reaction catalyzed by RNase A. [5,6-3H]Uridylyl-(3'-->5')adenosine was incubated with RNase A in the presence of excess unlabeled uridine 2',3'-cyclic phosphodiester, which dilutes the specific radioactivity of any released cyclic intermediate. Only 0.1% of the RNA substrate was found to be both transphosphorylated and hydrolyzed without dissociating from the enzyme. These results suggest that ribonucleases have evolved primarily to catalyze RNA transphosphorylation and not RNA hydrolysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00189a047 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Department of Chemistry, Institute for Chemical Epigenetics , Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany.
2',3'-Cyclic GMP-AMP (cGAMP) is a cyclic dinucleotide second messenger in which guanosine and adenosine are connected by one 3'-5' and one 2'-5' phosphodiester linkage. It is formed in the cytosol upon detection of pathogenic DNA by the enzyme guanosine-monophosphate-adenosine monophosphate synthase (cGAS). cGAMP subsequently binds to the adaptor protein stimulator of interferon genes (STING) to elicit an innate immune response leading to the production of type I interferons and cytokines.
View Article and Find Full Text PDFRNA
March 2024
Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
Fungal Trl1 is an essential trifunctional tRNA splicing enzyme that heals and seals tRNA exons with 2',3'-cyclic-PO and 5'-OH ends. Trl1 is composed of C-terminal cyclic phosphodiesterase and central polynucleotide kinase end-healing domains that generate the 3'-OH,2'-PO and 5'-PO termini required for sealing by an N-terminal ATP-dependent ligase domain. Trl1 enzymes are present in many human fungal pathogens and are promising targets for antifungal drug discovery because their domain structures and biochemical mechanisms are unique compared to the mammalian RtcB-type tRNA splicing enzyme.
View Article and Find Full Text PDFNucleic Acids Res
June 2023
Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany.
Structural analysis of RNA is an important and versatile tool to investigate the function of this type of molecules in the cell as well as in vitro. Several robust and reliable procedures are available, relying on chemical modification inducing RT stops or nucleotide misincorporations during reverse transcription. Others are based on cleavage reactions and RT stop signals.
View Article and Find Full Text PDFFront Microbiol
March 2022
Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain.
and evade the innate immune system of the infected host by mechanisms mediated by cell wall-anchored proteins: SntA and CdnP, respectively. The former has been reported to interfere with complement responses, and the latter dampens STING-dependent type-I interferon (IFN) response by hydrolysis of bacterial cyclic-di-AMP (c-di-AMP). Both proteins are homologous but, while CdnP has been studied as a phosphohydrolase, the enzyme activities of SntA have not been investigated.
View Article and Find Full Text PDFmBio
August 2021
Department of Cancer Biology, Lerner Research Institute, Cleveland Clinicgrid.239578.2 Foundation, Cleveland, Ohio, USA.
The 2',5'-oligoadenylate (2-5A)-dependent endoribonuclease, RNase L, is a principal mediator of the interferon (IFN) antiviral response. Therefore, the regulation of cellular levels of 2-5A is a key point of control in antiviral innate immunity. Cellular 2-5A levels are determined by IFN-inducible 2',5'-oligoadenylate synthetases (OASs) and by enzymes that degrade 2-5A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!