Ribonucleases catalyze the hydrolysis of the P-O5' bond in RNA. This reaction occurs in two steps: transphosphorylation of RNA to a 2',3'-cyclic phosphodiester intermediate and hydrolysis of this intermediate to a 3'-phosphomonoester. 31P NMR spectroscopy was used to monitor the accumulation of the 2',3'-cyclic phosphodiester intermediate during the transphosphorylation and hydrolysis reactions catalyzed by various ribonucleases and by small molecules. The intermediate was found to accumulate during catalysis by monomeric bovine pancreatic ribonuclease A (RNase A), a dimer and a trimer of RNase A, bovine seminal ribonuclease, RNase T1, barnase, and RNase 1. These enzymes, which are of widely disparate phylogenetic origin, released rather than hydrolyzed most of the intermediate formed transphosphorylation of RNA. In contrast, the intermediate did not accumulate during catalysis by hydroxide ion or imidazole buffer. In the presence of these small molecules, hydrolysis is faster than transphosphorylation. A trapping experiment was used to assess the throughput of the reaction catalyzed by RNase A. [5,6-3H]Uridylyl-(3'-->5')adenosine was incubated with RNase A in the presence of excess unlabeled uridine 2',3'-cyclic phosphodiester, which dilutes the specific radioactivity of any released cyclic intermediate. Only 0.1% of the RNA substrate was found to be both transphosphorylated and hydrolyzed without dissociating from the enzyme. These results suggest that ribonucleases have evolved primarily to catalyze RNA transphosphorylation and not RNA hydrolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00189a047DOI Listing

Publication Analysis

Top Keywords

2'3'-cyclic phosphodiester
16
phosphodiester intermediate
12
transphosphorylation rna
12
intermediate
8
small molecules
8
intermediate accumulate
8
accumulate catalysis
8
ribonuclease rnase
8
rna
6
rnase
6

Similar Publications

A Phosphotriester-Masked Dideoxy-cGAMP Derivative as a Cell-Permeable STING Agonist.

Angew Chem Int Ed Engl

December 2024

Department of Chemistry, Institute for Chemical Epigenetics , Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany.

2',3'-Cyclic GMP-AMP (cGAMP) is a cyclic dinucleotide second messenger in which guanosine and adenosine are connected by one 3'-5' and one 2'-5' phosphodiester linkage. It is formed in the cytosol upon detection of pathogenic DNA by the enzyme guanosine-monophosphate-adenosine monophosphate synthase (cGAS). cGAMP subsequently binds to the adaptor protein stimulator of interferon genes (STING) to elicit an innate immune response leading to the production of type I interferons and cytokines.

View Article and Find Full Text PDF

Fungal Trl1 is an essential trifunctional tRNA splicing enzyme that heals and seals tRNA exons with 2',3'-cyclic-PO and 5'-OH ends. Trl1 is composed of C-terminal cyclic phosphodiesterase and central polynucleotide kinase end-healing domains that generate the 3'-OH,2'-PO and 5'-PO termini required for sealing by an N-terminal ATP-dependent ligase domain. Trl1 enzymes are present in many human fungal pathogens and are promising targets for antifungal drug discovery because their domain structures and biochemical mechanisms are unique compared to the mammalian RtcB-type tRNA splicing enzyme.

View Article and Find Full Text PDF

Structural analysis of RNA is an important and versatile tool to investigate the function of this type of molecules in the cell as well as in vitro. Several robust and reliable procedures are available, relying on chemical modification inducing RT stops or nucleotide misincorporations during reverse transcription. Others are based on cleavage reactions and RT stop signals.

View Article and Find Full Text PDF

Enzyme Characterization of Pro-virulent SntA, a Cell Wall-Anchored Protein of , With Phosphodiesterase Activity on cyclic-di-AMP at a Level Suited to Limit the Innate Immune System.

Front Microbiol

March 2022

Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain.

and evade the innate immune system of the infected host by mechanisms mediated by cell wall-anchored proteins: SntA and CdnP, respectively. The former has been reported to interfere with complement responses, and the latter dampens STING-dependent type-I interferon (IFN) response by hydrolysis of bacterial cyclic-di-AMP (c-di-AMP). Both proteins are homologous but, while CdnP has been studied as a phosphohydrolase, the enzyme activities of SntA have not been investigated.

View Article and Find Full Text PDF

The 2',5'-oligoadenylate (2-5A)-dependent endoribonuclease, RNase L, is a principal mediator of the interferon (IFN) antiviral response. Therefore, the regulation of cellular levels of 2-5A is a key point of control in antiviral innate immunity. Cellular 2-5A levels are determined by IFN-inducible 2',5'-oligoadenylate synthetases (OASs) and by enzymes that degrade 2-5A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!