To test the hypothesis that the distribution of hemodynamic resistance is involved in the control of pulmonary capillary surface area, we measured permeability-surface area product (PS) and longitudinal resistance distribution (LRD) as functions of perfusion rate in isolated rabbit lungs under zone II conditions (n = 10) and through the zone II-III transition (n = 4). PS, considered to be indicative of functioning capillary surface area, was measured with the aid of the diffusion-limited tracer [14C]propanediol, whereas LRD was determined using a viscous bolus technique. LRD was seen to change character with increasing flow and increasing PS/surface area, becoming bimodal with low central resistance as full capillary recruitment was approached in zone III. Effects of hypoxic ventilation were studied in zone II in five lungs; it was found that hypoxia altered the LRD and eradicated the normoxic dependence of PS/surface area on perfusion rate. It was concluded that LRD is involved in the determination of functioning capillary surface area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jappl.1994.77.2.845 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!