Fluorescence in situ hybridization (FISH) has become an important tool not only in cytogenetic research but also in routine clinical chromosome diagnostics. Here, results of a quantification of fluorescence signals after in situ hybridization with repetitive DNA probes are reported using a non-enzymatic hybridization technique working with a buffer system not containing any formamide or equivalent chemical denaturing agents. Following simultaneous denaturation of both cells and DNA probes, the renaturation time was reduced to less than 30 min. For one of the DNA probes reasonable FISH-signals were even achieved after about 30 s renaturation time. In addition, the number of washing steps was reduced drastically. As a model system, two repetitive DNA probes (pUC 1.77, D15Z1) were hybridized to human metaphase spreads and interphase nuclei obtained from peripheral blood lymphocytes. The probes were labelled with digoxigenin and detected by FITC-anti-digoxigenin. The hybridization time was reduced step by step and the resulting fluorescence signals were examined systematically. For comparison the pUC 1.77 probe was also hybridized according to a FISH protocol containing 50% formamide. By renaturation for 2 h and overnight two FISH signals per nucleus were obtained. Using shorter renaturation times, no detectable FISH signals were observed. Quantification of the FISH signals was performed using a fluorescence microscope equipped with a cooled colour charge coupled device (CCD) camera. Image analysis was made interactively using a commercially available software package running on a PC (80486). For the pUC 1.77 probe the major binding sites (presumptive chromosomes 1) were clearly distinguished from the minor binding sites by means of the integrated fluorescence intensity. For the two (pUC 1.77) or four (D15Z1) brightest spots on the metaphase spreads and in the interphase nuclei hybridized without formamide, integrated fluorescence intensity distributions were measured for different renaturation times (0.5, 15, 30 min). The intra-nuclear variation in the intensity of the two brightest in situ hybridization spots appeared to be slightly higher (CV between 16 and 32%) than the corresponding variation in the metaphase spreads (CV between 10 and 19%). For the D15Z1 probe FISH signals were detected after hybridization without formamide and 15 min and 30 min renaturation. Always four bright spots were visible and tentatively assigned on the metaphase spreads (presumptive chromosome 15 and 9). The intensity variation of each pair of homologues in a metaphase spread showed a CV of 14 or 15%, respectively, for the presumptive chromosome 15, and 8 or 9%, respectively, for the presumptive chromosome 9.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cyto.990170103 | DOI Listing |
Anal Chim Acta
February 2025
Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China. Electronic address:
Background: Accurate quantification of microRNA (miRNA) is of great significance because it provides opportunities for the accurate early diagnosis of a series of human diseases including cancers. Currently, complicated nucleic acid amplification technologies are always required for the highly sensitive miRNA detection. The introduction of nucleic acid signal amplification coupled with various enzymes will inevitably lead to tedious work and increase the complexity of the analysis process.
View Article and Find Full Text PDFTalanta
January 2025
Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China. Electronic address:
There is a critical need for inclusive diagnostic platforms to enhance the accuracy of early breast cancer detection. Dysregulated microRNA-1246 (miR-1246), closely linked to the disease progression and recurrence, has emerged as a promising diagnostic and prognostic biomarker for BC. However, achieving simple, rapid, and ultrasensitive quantification of serum miRNAs remains significant challenge.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland.
Biosensors are transforming point-of-care diagnostics by simplifying the detection process and enabling rapid, accurate testing. This study introduces a novel, reusable biosensor designed for direct viral RNA detection from unfiltered saliva, targeting SARS-CoV-2. Unlike conventional methods requiring filtration, our biosensor leverages a unique electrode design that prevents interference from saliva debris, allowing precise measurements.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Pharmaceutical Sciences, Jilin Medical University, Jilin 132013, China.
The association between microRNAs and various diseases, especially cancer, has been established in recent years, indicating that miRNAs can potentially serve as biomarkers for these diseases. Determining miRNA concentrations in biological samples is crucial for disease diagnosis. Nevertheless, the stem-loop reverse transcription quantitative PCR method, the gold standard for detecting miRNA, has great challenges in terms of high costs and enzyme limitations when applied to clinical biological samples.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
Interspecific hybridization between relative species (with a diploid genome designated as TT), (EE) and (NN) and the successive polyploidization with transitions from sexuality to asexuality experienced by triploid hybrids likely influence their chromosomal rearrangements, including rearrangements of ribosomal DNA (rDNA) distribution patterns. Previously, we documented distinct karyotypic differences: exhibited bi-armed chromosomes while showed uni-armed chromosomes with rDNA-positive hybridization signals, respectively. In this study, fluorescence in situ hybridization (FISH) with rDNA and rDNA probes was used to analyze and compare chromosomal distribution patterns of rDNAs in clonally reproduced triploid hybrids of different genomic constitutions ETT, ETN, EEN and EET (referred to using acronyms denoting the haploid genomes of their parent species), and their parental species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!