In the fluid mosaic model of membranes, lipids are organized in the form of a bilayer supporting peripheral and integral proteins. This model considers the lipid bilayer as a two-dimensional fluid in which lipids and proteins are free to diffuse. As a direct consequence, both types of molecules would be expected to be randomly distributed within the membrane. In fact, evidences are accumulating to indicate the occurrence of both a transverse and lateral regionalization of membranes which can be described in terms of micro- and macrodomains, including the two leaflets of the lipid bilayer. The nature of the interactions responsible for the formation of domains, the way they develop and the time- and space-scale over which they exist represent today as many challenging problems in membranology. In this report, we will first consider some of the basic observations which point to the role of proteins in the transverse and lateral regionalization of membranes. Then, we will discuss some of the possible mechanisms which, in particular in terms of lipid/protein interactions, can explain lateral heterogenities in membranes and which have the merit of providing a thermodynamic support to the existence of lipid domains in membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0009-3084(94)90179-1 | DOI Listing |
Indiana Univ J Undergrad Res
June 2024
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine.
Angiomotins (Amots) are a family of adaptor proteins with important roles in cell growth, migration, and proliferation. The Amot coiled-coil homology (ACCH) domain has a high affinity for non-phosphorylated and mono-phosphorylated phosphatidylinositol which provides specificity in the membrane association. The membrane specificity is linked with targeting and recycling of the membrane protein to maintain normal cell phenotypes and function.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
Sterol transport proteins mediate intracellular sterol transport, organelle contact sites, and lipid metabolism. Despite their importance, the similarities in their sterol-binding domains have made the identification of selective modulators difficult. Herein we report a combination of different compound library synthesis strategies to prepare a cholic acid-inspired compound collection for the identification of potent and selective inhibitors of sterol transport proteins.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
Polymyxins are last-resort antimicrobial peptides administered clinically against multi-drug resistant bacteria, specifically in the case of Gram-negative species. However, an increasing number of these pathogens employ a defense strategy that involves a relay of enzymes encoded by the pmrE (ugd) loci and the arnBCDTEF operon. The pathway modifies the lipid-A component of the outer membrane (OM) lipopolysaccharide (LPS) by adding a 4-amino-4-deoxy-l-arabinose (L-Ara4N) headgroup, which renders polymyxins ineffective.
View Article and Find Full Text PDFTissue Cell
January 2025
Department of Gastrointestinal Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, Shandong 271000, China. Electronic address:
Background: Motile sperm domain containing 1 (MOSPD1) is overexpressed in colorectal, prostate, and breast cancers, but its role in gastric cancer (GC) progression remains unclear.
Methods: The effect of MOSPD1 was evaluated using cell viability, colony formation, wound healing, and Transwell assays. Triglyceride and lipid levels were measured in GC cells.
BMC Genomics
January 2025
Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.
Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!