The voltage-gated currents of the astrocytes associated with the retinal capillaries of the rabbit retina were studied using whole-cell patch clamp recording. The resting potential of these cells was -70 +/- 4.8 mV (mean +/- SEM; n = 54), and the input resistance and cell capacitance were 558 +/- 3.6 M omega and 19.5 +/- 1.8 pF respectively. Depolarization to potentials positive to -50 mV evoked rapidly activating inward and outward currents. The inward current was transient, eliminated by substitution of choline for Na+ in the bathing solution, and reduced by 50% in the presence of 1 microM tetrodotoxin. The time-to-peak of the Na+ current was more than twice that for the Na+ current found in retinal neurons. The glial Na+ current was half-inactivated at -55 mV. A transient component of the outward K+ current was blocked by external 4-aminopyridine while a more sustained component was blocked by external tetraethylammonium. At potentials between -150 and -50 mV the membrane behaved Ohmically. Voltage-gated currents in retinal astrocytes recorded in situ appear qualitatively similar to those described for some glial cells in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1460-9568.1994.tb01002.x | DOI Listing |
J Neurosci
January 2025
Carney Institute for Brain Science, Brown University, Providence, RI 02912
The neuromuscular junction (NMJ) is the linchpin of nerve-evoked muscle contraction. Broadly, the function of the NMJ is to transduce nerve action potentials into muscle fiber action potentials (MFAPs). Efficient neuromuscular transmission requires both cholinergic signaling, responsible for generation of endplate potentials (EPPs), and excitation, the amplification of the EPP by postsynaptic voltage-gated sodium channels (Nav1.
View Article and Find Full Text PDFJ Neurosci
January 2025
Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
Action potentials (spikes) are regenerated at each node of Ranvier during saltatory transmission along a myelinated axon. The high density of voltage-gated sodium channels required by nodes to reliably transmit spikes increases the risk of ectopic spike generation in the axon. Here we show that ectopic spiking is avoided because K1 channels prevent nodes from responding to slow depolarization; instead, axons respond selectively to rapid depolarization because K1 channels implement a high-pass filter.
View Article and Find Full Text PDFArch Pediatr
January 2025
CMR Neuromusculaire, Service de génétique médicale, Hôpital Estaing, CHU de Clermont-Ferrand, Clermont-Ferrand, France. Electronic address:
Background: Myotonia is the main feature of both myotonic dystrophy (DM) and non-dystrophic myotonia (NDM). It is felt as stiffness, pain, fatigue, and weakness. In France, mexiletine, a non-selective voltage-gated sodium channel blocker, is approved for the treatment of myotonia in adults with NDM, and it has a temporary recommendation for use in the symptomatic treatment of DM in adults.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China.
This study combines experimental techniques and mathematical modeling to investigate the dynamics of C. elegans body-wall muscle cells. Specifically, by conducting voltage clamp and mutant experiments, we identify key ion channels, particularly the L-type voltage-gated calcium channel (EGL-19) and potassium channels (SHK-1, SLO-2), which are crucial for generating action potentials.
View Article and Find Full Text PDFThe Ca 3.2 isoform of T-type voltage-gated calcium channels plays a crucial role in regulating the excitability of nociceptive neurons; the endogenous molecules that modulate its activity, however, remain poorly understood. Here, we used serum proteomics and patch-clamp physiology to discover a novel peptide albumin (1-26) that facilitates channel gating by chelating trace metals that tonically inhibit Ca 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!