Liver injury with tetrachloromethane in white rats is accompanied by accumulation of hydroperoxides in the blood plasma and liver tissue and suppression of antioxidant system (the activity of superoxide dismutase, catalase, glutathione peroxidase, contents of SH-groups and total phospholipids drastically decreases). Ceruloplasmin level in plasma, on the contrary, increases. Enterosorbent SUGS-E in a dose of 19 g/kg partially normalizes violated balance between the activity of free radical processes and state of the antioxidant protection system.

Download full-text PDF

Source

Publication Analysis

Top Keywords

liver injury
8
[correction disorders
4
disorders oxidative
4
oxidative processes
4
processes toxic
4
toxic liver
4
injury enterosorption]
4
enterosorption] liver
4
injury tetrachloromethane
4
tetrachloromethane white
4

Similar Publications

Mitochondrial dysfunction-driven AMPK-p53 axis activation underpins the anti-hepatocellular carcinoma effects of sulfane sulfur.

Sci Rep

January 2025

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.

Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer, notoriously refractory to conventional chemotherapy. Historically, sulfane sulfur-based compounds have been explored for the treatment of HCC, but their efficacy has been underwhelming. We recently reported a novel sulfane sulfur donor, PSCP, which exhibited improved chemical stability and structural malleability.

View Article and Find Full Text PDF

Vasoplegia in Heart, Lung, or Liver Transplantation: A Narrative Review.

J Cardiothorac Vasc Anesth

January 2025

Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA.

Vasoplegia is a pathophysiologic state of hypotension in the setting of normal or high cardiac output and low systemic vascular resistance despite euvolemia and high-dose vasoconstrictors. Vasoplegia in heart, lung, or liver transplantation is of particular interest because it is common (approximately 29%, 28%, and 11%, respectively), is associated with adverse outcomes, and because the agents used to treat vasoplegia can affect immunosuppressive and other drug metabolism. This narrative review discusses the pathophysiology, risk factors, and treatment of vasoplegia in patients undergoing heart, lung, and liver transplantation.

View Article and Find Full Text PDF

The Pharmacology and Toxicology of Ginkgolic Acids: Secondary Metabolites from .

Am J Chin Med

January 2025

School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, P. R. China.

Ginkgolic acids (GAs) are distinctive secondary metabolites of () primarily found in its leaves and seeds, with the highest concentration located in the exotesta. GAs are classified as long-chain phenolic compounds, and exhibit structural similarities to lignoceric acid. Their structural diversity arises from variations in the length of side chains and their number of double bonds, resulting in six distinct forms within extracts (GBE).

View Article and Find Full Text PDF

We describe a case of sarcoidosis in a previously healthy 39-year-old man with the development of an acute kidney injury, requiring renal replacement therapy, as the first manifestation of the disease. The course of the disease was complicated by a сatheter-associated bloodstream infection. According to the histological examination of kidney biopsy samples, granulomatous interstitial nephritis was diagnosed.

View Article and Find Full Text PDF

Cr(VI) is widely used in industry and has high toxicity, making it one of the most common environmental pollutants. Long-term exposure to Cr(VI) can cause metabolic disorders and tissue damage. However, the effects of Cr(VI) on liver and gut microbes in fish have rarely been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!