The role of the emoxipin (Em.) (2-ethyl-6-methyl-3-oxipyridine) in the correction of the free radical oxidation and allied processes in lung tissues and blood plasma under high-pressure oxygen-prolonged action has been investigated. The studied oxygen exposure (0.3 MPa, 5h) causes the lung stage of oxygen intoxication. It is confirmed by exterior morphological assessment of the lung. The lipid peroxidation increase in lung tissue and blood plasma as well as erythrocyte membranes destabilization result from oxygen exposure. Lipid peroxidation intensity was estimated by determining of content of lipid peroxidation molecular products such as diene conjugates and Shiffs' bases. Erythrocyte membranes stability was evaluated with hemoglobin yield, total iron level and total peroxidase activity in blood plasma. Emoxipin was injected intraperitoneally in a dose 150 mg per 1 kg rats' weight just before the oxygen exposure. Emoxipin is found to improve physiological state of animals and to increase their survival; it normalizes morphology of the lungs and their state; stabilizes erythrocyte membranes injured under oxygen exposure; decreases intensity of lipid peroxidation processes in the lungs and in blood plasma which was previously increased under hyperoxia.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!