The aim of this study was to evaluate the possible influence of phthalocyanine dose and of time interval between phthalocyanine injection and irradiation commencement on the rate of experimental corneal neovascularization photodynamic thrombosis in albino rabbits. New corneal vessels were irradiated with a diode laser (670 nm, 2 mW) after the intravenous injection of chloroaluminum sulfonated phthalocyanine. Different animals were irradiated either 5 min after the injection of different phthalocyanine doses (3, 6, 8, 12, or 14 mg/kg), or at different times (5 min, 24 h, or 58 h) after a standard phthalocyanine dose (3 mg/kg) injection. Irradiation time necessary for vascular occlusion was recorded. Decrease of phthalocyanine dose as well as delay of irradiation onset resulted in a statistically significant increase of irradiation time. Electron and light histological examination revealed platelet thrombi inside irradiated corneal new vessels. Damage in the vascular endothelial cell membrane and in intercellular contact structure was noted, leading to disorganization of the endothelial cells layer and death of most endothelial cells. These results indicate that both early commencement of irradiation after phthalocyanine injection and phthalocyanine dose increase accelerate the rate of phthalocyanine mediated corneal neovascularization photodynamic thrombosis. Thrombosis seems to result from photochemically induced vascular endothelial cell damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/lsm.1900150105 | DOI Listing |
Adv Healthc Mater
January 2025
Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China.
Bone defects caused by fractures and diseases often do not heal spontaneously. They require external agents for repair and regeneration. Bone tissue engineering is emerging as a promising alternative to traditional therapies like autografts and allografts.
View Article and Find Full Text PDFBiomater Sci
January 2025
National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
Photocrosslinkable hydrogels based on hyaluronic acid are promising biomaterials high in demand in tissue engineering. Typically, hydrogels are photocured under the action of UV or blue light strongly absorbed by biotissues, which limits prototyping under living organism conditions. To overcome this limitation, we propose the derivatives of well-known photosensitizers, namely chlorin , chlorin and phthalocyanine, as those for radical polymerization in the transparency window of biotissues.
View Article and Find Full Text PDFBioorg Chem
February 2025
Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland; A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland. Electronic address:
Novel pH-sensitive polymeric photosensitizer carriers from the phthalocyanine (Pc) group were investigated as potential photodynamic therapy drugs for the treatment of breast cancer. Their high antiproliferative activity was confirmed by photocytotoxicity studies, which indicated their high efficacy and specificity toward the SK-BR-3 cell line. Importantly, the Pcs encapsulated in the polymeric nanoparticle (NP) carrier exhibited a much better penetration into the acidic environment of tumor cells than their free form.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain. Electronic address:
Four photosensitizers PS1a-PS4a consisting in multicationic ruthenium(II) phthalocyanines (RuPcs) have been evaluated in photodynamic inactivation (PDI) of multiresistant microorganisms. The RuPcs, bearing from 4 to 12 terminal ammonium salts, have been designed to target the microorganisms cytoplasmic cell membrane and display high singlet oxygen quantum yields. In addition, PS3a and PS4a were conceived to exhibit multi-target localization by endowing them with amphiphilic character, using two different structural approaches.
View Article and Find Full Text PDFBrain Res
December 2024
Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan; Department of Laboratory Medicine, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan. Electronic address:
The deposition of aggregated amyloid β (Aβ) is considered as a key factor for Alzheimer's Disease (AD). Previously, we demonstrated that a carboxylated Zn-phthalocyanine (ZnPc) inhibits Aβ fibril formation, consequently protects neurons in culture. This study evaluated the effects of ZnPc on pathological changes in an AD mouse model (J20).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!