Background: Exogenous adenosine has been shown to increase muscle sympathetic nerve activity (MSNA), blood pressure, heart rate, and ventilation in conscious humans, effects attributed to peripheral chemoreceptor activation.
Methods And Results: To determine whether endogenous adenosine has similar effects and whether they are mediated through chemoreceptor activation, we examined the effects of dipyridamole, an inhibitor of adenosine reuptake, on sympathetic nerve activity and ventilation. Twenty studies were conducted on separate days in 15 healthy volunteers. We examined responses to dipyridamole 0.56 mg/kg during room air breathing (n = 7), during hyperoxia (100% O2, n = 6), and during room air breathing after pretreatment with aminophylline (n = 7). During room air breathing, dipyridamole increased MSNA from 231 +/- 42 to 504 +/- 136 U/min, heart rate from 65 +/- 3.8 to 96 +/- 4.7 beats per minute, and systolic blood pressure from 129 +/- 3.5 to 140 +/- 4.8 mm Hg; central venous pressure decreased from 5.5 +/- 0.4 to 4.5 +/- 0.3 mm Hg (P < .01), and minute ventilation increased from 7.8 +/- 0.6 to 9.1 +/- 0.5 L/min (P < .01). During peripheral chemoreceptor suppression (with hyperoxia), there was a dissociation of the effects of dipyridamole on ventilation and sympathoexcitation. Effects on ventilation were attenuated, but sympathoexcitatory effects were not. Pretreatment with aminophylline, an adenosine receptor antagonist, either abolished (blood pressure, minute ventilation, and end-tidal CO2) or markedly attenuated (MSNA and heart rate) the effects of dipyridamole during room air breathing.
Conclusions: Augmentation of endogenous adenosine with dipyridamole increases sympathetic nerve activity and ventilation in conscious humans. The ventilatory effects of endogenous adenosine are mediated predominantly by chemoreceptor activation, but the sympathetic and hemodynamic responses to endogenous adenosine are probably mediated by an additional afferent mechanism that is independent of peripheral chemoreceptor activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.cir.90.6.2919 | DOI Listing |
Immunol Rev
January 2025
Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India.
Z-nucleic acid binding protein 1 (ZBP1) is an innate immune sensor recognizing nucleic acids in Z-conformation. Upon Z-nucleic acid sensing, ZBP1 triggers innate immune activation, inflammation, and programmed cell death during viral infections, mice development, and inflammation-associated diseases. The Zα domains of ZBP1 sense Z-nucleic acids and promote RIP-homotypic interaction motif (RHIM)-dependent signaling complex assembly to mount cell death and inflammation.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
The current opioid crisis urgently calls for developing non-addictive pain medications. Progress has been slow, highlighting the need to uncover targets with unique mechanisms of action. Extracellular adenosine alleviates pain by activating the adenosine A1 receptor (A1R).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
Hypomethylating agents (HMAs) such as azacytidine and decitabine are FDA-approved chemotherapy drugs for hematologic malignancy. By inhibiting DNA methyltransferases, HMAs reactivate tumor suppressor genes (TSGs) and endogenous double-stranded RNAs (dsRNAs) that limit tumor growth and trigger apoptosis via viral mimicry. Yet, HMAs show limited effects in many solid tumors despite the strong induction of TSGs and dsRNAs.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, China.
We investigated the effects of exogenous abscisic acid (ABA) on grain filling, starch accumulation, and endogenous hormones in maize (both the heat-tolerant maize variety Zhengdan 958 (ZD958) and the heat-sensitive variety Xianyu 335 (XY335)) under early post-anthesis high temperature stress by simulating high temperature stress for a period of 6 to 12 days post-anthesis in 2022 and 2023. There were three treatments: spraying water at ambient temperature as the control, spraying water at high temperature, and spraying ABA at high temperature. The results showed that early post-anthesis high temperature stress resulted in a significant reduction in grain weight and yield in maize, with XY335 showing a greater reduction than ZD958.
View Article and Find Full Text PDFActivation of PLCβ enzymes by G and G proteins is a common mechanism to trigger cytosolic Ca increase. We and others reported that G inhibitor FR900358 (FR) can inhibit both and G- and, surprisingly, G-mediated intracellular Ca mobilization. Thus, the G-G-PLCβ-Ca signaling axis depends entirely on the presence of active G, which reasonably explained FR-inhibited G-induced Ca release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!