Aminoalcoholphosphotransferases (AAPTases) utilize diacylglycerols and cytidine diphosphate (CDP)-aminoalcohols as substrates in the synthesis of the abundant membrane lipids phosphatidylcholine and phosphatidylethanolamine. A soybean cDNA encoding an AAPTase that demonstrates high levels of CDP-choline:sn-1,2-diacylglycerol cholinephosphotransferase activity was isolated by complementation of a yeast strain deficient in this function and was designated AAPT1. The deduced amino acid sequence of the soybean cDNA showed nearly equal similarity to each of the two characterized AAPTase sequences from yeast, cholinephosphotransferase and ethanolaminephosphotransferase (CDP-ethanolamine:sn-1,2-diacylglycerol ethanolaminephosphotransferase). Moreover, assays of soybean AAPT1-encoded enzyme activity in yeast microsomal membranes revealed that the addition of CDP-ethanolamine to the reaction inhibited incorporation of 14C-CDP-choline into phosphatidylcholine in a manner very similar to that observed using unlabeled CDP-choline. Although DNA gel blot analysis suggested that AAPT1-like sequences are represented in soybean as a small multigene family, the same AAPT1 isoform isolated from a young leaf cDNA library was also recovered from a developing seed cDNA library. Expression assays in yeast using soybean AAPT1 cDNAs that differed only in length suggested that sequences in the 5'leader of the transcript were responsible for the negative regulation of gene activity in this heterologous system. The inhibition of translation mediated by a short open reading frame located 124 bp upstream of the AAPT1 reading frame is one model proposed for the observed down-regulation of gene activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC160537 | PMC |
http://dx.doi.org/10.1105/tpc.6.10.1495 | DOI Listing |
Plants (Basel)
December 2024
College of Plant Sciences, Jilin University, Changchun 130062, China.
Chloroplasts are not only places for photosynthesis, but also participate in plant immunity and are important targets of pathogens. Pathogens secrete chloroplast-targeted proteins (CTPs) that disrupt host immunity and promote infection. (Lib.
View Article and Find Full Text PDFJ Virol Methods
December 2024
Division of Plant Quarantine, ICAR-NBPGR, New Delhi, India. Electronic address:
Five simplex and a multiplex-RT-PCR (m-RT-PCR) protocols were developed for detection and differentiation of bean pod mottle virus (BPMV), cherry leaf roll virus (CLRV), raspberry ringspot virus (RpRSV), soybean mosaic virus (SMV) and tomato ringspot virus (ToRSV) infecting soybean. The simplex RT-PCR protocols produced virus-specific amplicons of 538 bp for BPMV, 139 bp for CLRV, 298 bp for RpRSV, 403 bp for SMV, and 282 bp for ToRSV, with sensitivity down to 10 diluted cDNA. Further, to detect all the five viruses simultaneously in a single tube a quintuplex RT-PCR protocol was optimized with as low as 10 diluted cDNA and 0.
View Article and Find Full Text PDFJ Insect Physiol
July 2024
Department of Life Sciences, University of Bath, Bath BA2 7AY, UK; Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK. Electronic address:
Like other lepidopteran insects, males of the tobacco cutworm moth, Spodoptera litura produce two kinds of spermatozoa, eupyrene (nucleate) and apyrene (anucleate) sperm. Formed in the testis, both kinds of sperm are released into the male reproductive tract in an immature form and are stored in the duplex region of the tract. Neither type of sperm is motile at this stage.
View Article and Find Full Text PDFPlant Cell Rep
May 2024
Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
The soybean gene GmSABP2-1 encodes methyl salicylate esterase and its overexpression led to significant reduction in development of pathogenic soybean cyst nematode. Soybean cyst nematode (SCN, Heterodera glycines) is one of the most devastating pests of soybean (Glycine max L. Merr.
View Article and Find Full Text PDFPlants (Basel)
February 2024
Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
The recognition of pathogen effectors through the nucleotide-binding leucine-rich repeat receptor (NLR) family is an important component of plant immunity. In addition to typical domains such as TIR, CC, NBS, and LRR, NLR proteins also contain some atypical integrated domains (IDs), the roles of which are rarely investigated. Here, we carefully screened the soybean () genome and identified the IDs that appeared in the soybean TNL-like proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!