A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The influence of limited presynaptic growth and synapse removal on adaptive synaptogenesis. | LitMetric

This report continues our research into the effectiveness of adaptive synaptogenesis in constructing feed-forward networks which perform good transformations on their inputs. Good transformations are characterized by the maintenance of input information and the removal of statistical dependence. Adaptive synaptogenesis stochastically builds and sculpts a synaptic connectivity in initially unconnected networks using two mechanisms. The first, synaptogenesis, creates new, excitatory, feed-forward connections. The second, associative modification, adjusts the strength of existing synapses. Our previous implementations of synaptogenesis only incorporated a postsynaptic regulatory process, receptivity to new innervation (Adelsberger-Mangan and Levy 1993a, b). In the present study, a presynaptic regulatory process, presynaptic avidity, which regulates the tendency of a presynaptic neuron to participate in a new synaptic connection as a function of its total synaptic weight, is incorporated into the synaptogenesis process. In addition, we investigate a third mechanism, selective synapse removal. This process removes synapses between neurons whose firing is poorly correlated. Networks that are constructed with the presynaptic regulatory process maintain more information and remove more statistical dependence than networks constructed with postsynaptic receptivity and associative modification alone. Selective synapse removal also improves network performance, but only when implemented in conjunction with the presynaptic regulatory process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00198922DOI Listing

Publication Analysis

Top Keywords

regulatory process
16
synapse removal
12
adaptive synaptogenesis
12
presynaptic regulatory
12
good transformations
8
statistical dependence
8
associative modification
8
selective synapse
8
networks constructed
8
presynaptic
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!