Extracellular events regulate functions in the cell nucleus by means of calcium ions acting through effector enzymes. Recently, the traditional view of the nuclear pore as freely permeable to small ions has been questioned as a result of reports that nuclear calcium can be regulated independently of cytosolic calcium. We have used confocal microscopy of fluorescent Ca2+ indicators to investigate the Ca2+ dynamics between cytosol and nucleus in neurons. We find that a previously reported amplification of Ca2+ changes in the nucleus is a measurement artefact. Small changes of cytosolic Ca2+ cause equally rapid changes in nuclear Ca2+, consistent with the free diffusion of Ca2+ through nuclear pores. In contrast, large cytosolic Ca2+ increases (above 300 nM) are attenuated in the nucleus. Our results show the nuclear envelope shapes but does not block the passage of Ca2+ signals from cytosol to nucleus.

Download full-text PDF

Source
http://dx.doi.org/10.1038/367745a0DOI Listing

Publication Analysis

Top Keywords

large cytosolic
8
cytosolic calcium
8
ca2+
8
cytosol nucleus
8
cytosolic ca2+
8
nucleus
6
nuclear
5
nucleus insulated
4
insulated large
4
cytosolic
4

Similar Publications

Arbuscular mycorrhizal (AM) fungi engage in symbiotic relationships with plants, influencing their phosphate (Pi) uptake pathways, metabolism, and root cell physiology. Despite the significant role of Pi, its distribution and response dynamics in mycorrhizal roots remain largely unexplored. While traditional techniques for Pi measurement have shed some light on this, real-time cellular-level monitoring has been a challenge.

View Article and Find Full Text PDF

The mycomembrane of mycobacteria has long been regarded as the primary barrier to the accumulation of molecules within these bacteria. Understanding accumulation beyond the mycomembrane of ( ) is crucial for developing effective antimycobacterial agents. This study investigates two design principles commonly found in natural products and mammalian cell-permeable peptides - backbone -methylation and macrocyclization - aimed at enhancing accumulation.

View Article and Find Full Text PDF

Objectives: Mitochondrial Ca uniporter (MCU) provides a Ca influx pathway from the cytosol into the mitochondrial matrix and a moderate mitochondrial Ca rise stimulates ATP production and cell growth. MCU is highly expressed in various cancer cells including breast cancer cells, thereby increasing the capacity of mitochondrial Ca uptake, ATP production, and cancer cell proliferation. The objective of this study was to examine MCU inhibition as an anti-cancer mechanism.

View Article and Find Full Text PDF

The design of functional artificial cells involves compartmentalizing biochemical processes to mimic cellular organization. To emulate the complex chemical systems in biological cells, it is necessary to incorporate an increasing number of cellular functions into single compartments. Artificial organelles that spatially segregate reactions inside artificial cells will be beneficial in this context by rectifying biochemical pathways.

View Article and Find Full Text PDF

Mitochondrial protein import stress.

Nat Cell Biol

January 2025

Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.

Mitochondria have to import a large number of precursor proteins from the cytosol. Chaperones keep these proteins in a largely unfolded state and guide them to the mitochondrial import sites. Premature folding, mitochondrial stress and import defects can cause clogging of import sites and accumulation of non-imported precursors, representing a critical burden for cellular proteostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!