Gelatinase A (MMP-2) and cathepsin B are proteinases which have been proposed to participate in human tumor invasion and metastasis. Precise quantitation of the activity of these enzymes in invading tumors has not been previously described. We utilized a novel tissue microdissection technique to determine levels of enzyme activity in specific microscopic areas of invasive human colon cancer. Tissue specimens smaller than one high power field can be extracted from the samples and analyzed. Increased levels of pro-enzyme and active enzyme forms of gelatinase A (MMP-2) and increased cathepsin B activity were localized in regions of tumor invasion as compared with a matched number of normal epithelial cells from the same patient. Levels of progelatinase B (MMP-9) were also increased in the tumors; however, we did not observe activation of this enzyme. To investigate the mechanism of gelatinase A activation, we amplified DNA of specific microdissected tumor cell populations using polymerase chain reaction. We did not detect a mutation in the activation locus of the enzyme in any of the tumors studied, which suggests that activation may be due to up-regulation of a tumor-associated gelatinase A activating species. Microdissection of frozen tissue sections may prove valuable in the study of proteinases in human tumor invasion as well as in the detection of genetic alterations in human cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1887494PMC

Publication Analysis

Top Keywords

gelatinase mmp-2
12
tumor invasion
12
mmp-2 cathepsin
8
cathepsin activity
8
human colon
8
colon cancer
8
human tumor
8
tumor
5
human
5
increased
4

Similar Publications

Vitamin Bs as Potent Anticancer Agents through MMP-2/9 Regulation.

Front Biosci (Landmark Ed)

January 2025

Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea.

In recent years, the role of coenzymes, particularly those from the vitamin B group in modulating the activity of metalloenzymes has garnered significant attention in cancer treatment strategies. Metalloenzymes play pivotal roles in various cellular processes, including DNA repair, cell signaling, and metabolism, making them promising targets for cancer therapy. This review explores the complex interplay between coenzymes, specifically vitamin Bs, and metalloenzymes in cancer pathogenesis and treatment.

View Article and Find Full Text PDF

Irisin is a newly discovered 12 kDa messenger protein involved in energy metabolism. Irisin affects signaling pathways in several types of cancer; however, the role of irisin in metastatic melanoma (MM) has not been described yet. We explored the biological effects of irisin in in vitro models of MM cells (HBL, LND1, Hmel1 and M3) capable of the oncogenic activation of BRAF.

View Article and Find Full Text PDF

Colorectal cancer (CRC) remains one of the most prevalent and lethal cancers worldwide, prompting ongoing research into innovative therapeutic strategies. This review aims to systematically evaluate the role of gelatinases, specifically MMP-2 and MMP-9, as therapeutic targets in CRC, providing a critical analysis of their potential to improve patient outcomes. Gelatinases, specifically MMP-2 and MMP-9, play critical roles in the processes of tumor growth, invasion, and metastasis.

View Article and Find Full Text PDF

Background: High-mobility group box 1 () participates in the progression of osteosarcoma (OS) through the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Corylin, one of the active components of , has anti-oxidant, anti-inflammatory, and anti-tumor effects. This study investigates the association between corylin and , and their impact and mechanism of action on OS.

View Article and Find Full Text PDF

Increasing matrix metalloproteinase-2 activity by treatment of ovine cervical explants with a long-acting analogue of oxytocin (Carbetocin) at the expected time of artificial insemination.

Vet Res Commun

January 2025

Biochemistry, Veterinary Biosciences Department, Veterinary Faculty, Universidad de la República, Ruta 8, Km 18 y Ruta 102, Montevideo, 13000, Uruguay.

The aim was to study the effect of long-acting analogue of oxytocin (Carbetocin) on cervical collagenolysis of MAP-eCG synchronized ewes. At the expected time of artificial insemination, five ewes were slaughtered (n = 5) and their cervical explants (100-200 mg) were incubated during 12 h with MEM supplemented with 0, 8, 16, 32 and 64 ng/mL of Cb. Activities of activated and latent forms of matrix metalloproteinases-2 and - 9 (MMP-2 and MMP-9, respectively) in the supernatant were determined by a SDS-PAGE zymography and prostaglandin E2 concentration by immunoassay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!