A method of correcting DNA ploidy measurements in tissue sections.

Mod Pathol

Quantitative Diagnostics Laboratory, Elmhurst, Illinois.

Published: August 1994

A new method of performing DNA ploidy measurements in tissue sections using image cytometry is described. The method involves an image processing "object" filtering operation to remove cut and overlapping nuclei, and DNA correction of larger nuclei for the part of the DNA cut away. The methodology of the technique is developed in detail, and the results of testing using sections of rat liver are presented. The results indicated reliable correction of DNA ploidy histograms to reconstruct the polyploid nature of this material. The sensitivity of the material to sectioning thickness errors and methods to overcome this were shown, along with an example of its use on prostate bioptic gun tissue sections.

Download full-text PDF

Source

Publication Analysis

Top Keywords

dna ploidy
12
tissue sections
12
ploidy measurements
8
measurements tissue
8
nuclei dna
8
dna
5
method correcting
4
correcting dna
4
sections
4
sections method
4

Similar Publications

Root-knot nematodes (RKN) of the genus Meloidogyne are obligatory plant endoparasites that cause substantial economic losses to agricultural production and impact the global food supply. These plant parasitic nematodes belong to the most widespread and devastating genus worldwide, yet few measures of control are available. The most efficient way to control RKN is deployment of resistance genes in plants.

View Article and Find Full Text PDF

Purpose: This study aimed to investigate the role of DNA ploidy and proliferation index in distinguishing ameloblastoma (AB) from ameloblastic carcinoma (AC).

Methods: The study included 29 ACs, 6 conventional ABs that transformed into ACs, and a control cohort of 20 conventional ABs. The demographics and clinicopathologic details of the included cases were summarised and compared.

View Article and Find Full Text PDF

The haploid induction ability analysis of various mutation of OsMATL and OsDMPs in rice.

BMC Biol

January 2025

National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.

Background: The high-frequency induction rate of haploid is crucial for double haploid (DH) breeding. The combination of multiple haploid-induced genes, such as ZmPLA1/MATL/NLD and ZmDMP, can synergistically enhance the haploid induction rate (HIR) in maize. However, the potential synergistic effects between OsMATL and OsDMP genes in rice remain unclear.

View Article and Find Full Text PDF

Could metabolic imaging and artificial intelligence provide a novel path to non-invasive aneuploidy assessments? A certain clinical need.

Reprod Fertil Dev

January 2025

Fertility & Research Centre, Discipline of Women health, School of Clinical Medicine and the Royal Hospital for Women, University of New South Wales, Sydney, NSW, Australia.

Pre-implantation genetic testing for aneuploidy (PGT-A) via embryo biopsy helps in embryo selection by assessing embryo ploidy. However, clinical practice needs to consider the invasive nature of embryo biopsy, potential mosaicism, and inaccurate representation of the entire embryo. This creates a significant clinical need for improved diagnostic practices that do not harm embryos or raise treatment costs.

View Article and Find Full Text PDF

Correlation among blastocoel fluid DNA level, apoptotic genes expression and preimplantation aneuploidy.

Reprod Fertil

January 2025

M Bazrgar, Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran., Tehran, Iran (the Islamic Republic of).

It is believed that aneuploid embryos release cell-free DNA (cfDNA) into the blastocyst cavity during the self-correction process through the apoptotic mechanism. This study aimed to develop less invasive methods for predicting ploidy status by investigating how ploidy status affects blastocoel fluid DNA (BF-DNA) levels and apoptotic gene expression as indicators of embryo viability. Human blastocysts were classified into three groups; Survivable Embryo (SE), Fatal Single and double Aneuploidy (FSDA), and Multiple Aneuploidy (MA) using array comparative genomic hybridization (array-CGH) by trophectoderm (TE) biopsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!