Anandamide (N-arachidonoyl-ethanolamine) was recently identified as a brain arachidonate derivative that binds to and activates cannabinoid receptors, yet the mechanisms underlying formation, release and inactivation of this putative messenger molecule are still unclear. Here we report that anandamide is produced in and released from cultured brain neurons in a calcium ion-dependent manner when the neurons are stimulated with membrane-depolarizing agents. Anandamide formation occurs through phosphodiesterase-mediated cleavage of a novel phospholipid precursor, N-arachidonoyl-phosphatidylethanolamine. A similar mechanism also governs the formation of a family of anandamide congeners, whose possible roles in neuronal signalling remain unknown. Our results and those of others indicate therefore that multiple biochemical pathways may participate in anandamide formation in brain tissue. The life span of extracellular anandamide is limited by a rapid and selective process of cellular uptake, which is accompanied by hydrolytic degradation to ethanolamine and arachidonate. Our results thus strongly support the proposed role of anandamide as an endogenous neuronal messenger.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/372686a0 | DOI Listing |
Molecules
January 2025
Escuela Profesional de Farmacía y Bioquímica, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04000, Peru.
Epilepsy is a chronic neurological disorder that affects nearly 50 million people worldwide. Experimental evidence suggests that epileptic neurons are linked to the endocannabinoid system and that inhibition of the FAAH enzyme could have neuroprotective effects by increasing the levels of endogenous endocannabinoid anandamide. In this context, the use of macamides as therapeutic agents in neurological diseases has increased in recent years.
View Article and Find Full Text PDFNeuropsychopharmacology
January 2025
Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.
Social relationships are central to well-being. A subgroup of afferent nerve fibers, C-tactile (CT) afferents, are primed to respond to affective, socially relevant touch and may mitigate the effects of stress. The endocannabinoid ligand anandamide (AEA) modulates both social reward and stress.
View Article and Find Full Text PDFAm J Respir Crit Care Med
January 2025
AstraZeneca, BioPharmaceuticals R&D, Gaithersburg, Maryland, United States.
J Dairy Sci
January 2025
Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel. Electronic address:
Activation of the endocannabinoid system (ECS) elicits negative effects on the reproductive system in mammals. Omega-3 (n-3) fatty acid (FA) supplementation lowers ECS activation and has anti-inflammatory effects. Thus, we hypothesized that supplementing cows with n-3 FA will downregulate components of the ECS and immune system in preovulatory follicles and in the endometrium.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, Ribeirão Preto-SP, Brazil.
Cannabidiol (CBD) and Δ-tetrahydrocannabinol (THC), the main components of Cannabis sativa plants, can interact with specific cell receptors known as cannabinoid receptors (CBs). The endogenous compounds anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are CB agonists, and, alongside enzymes, they constitute the endocannabinoid system (ECS) and take part in neuromodulation. Several LC-MS/MS methods have been developed to quantify these compounds in biological matrixes, but a fast and simple method that can determine these analytes in plasma samples simultaneously is not available.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!