Remarkable and novel increase.

Nature

Published: December 1994

Download full-text PDF

Source
http://dx.doi.org/10.1038/372588a0DOI Listing

Publication Analysis

Top Keywords

remarkable novel
4
novel increase
4
remarkable
1
increase
1

Similar Publications

Identification and regulation of a novel leptin receptor-linked enhancer during zebrafish ventricle regeneration.

Life Sci

January 2025

TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China. Electronic address:

Aims: Vertebrates vary greatly in their abilities to regenerate injured hearts. Zebrafish possess a remarkable capacity for cardiac regeneration, making them an excellent model for regeneration research. Recent studies have reported the activation and underlying regulatory mechanisms of leptin b (lepb) and the leptin b-linked enhancer (LEN) in injured hearts.

View Article and Find Full Text PDF

Deep eutectic solvent induced silver-gel as a flexible SERS substrate for sensitive detection of antibiotics under low temperature conditions.

J Hazard Mater

January 2025

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China; School of Materials Science and Engineering, Xinjiang Engineering Research Center of Environmental and Functional Materials, Xinjiang University, Urumqi, 830017, Xinjiang, PR China. Electronic address:

Antibiotic residues pose a significant threat to global health. Traditional detection methods for antibiotics are cumbersome, time-consuming and often incapable of achieving non-destructive detection at low temperatures. This research introduces a groundbreaking innovation in antibiotic detection: a flexible Surface-Enhanced Raman Scattering substrate based on a silver composite deep eutectic solvent (DES) gel, specifically engineered for low-temperature antibiotic detection.

View Article and Find Full Text PDF

Identification of a 7H-pyrrolo[2,3-d]pyrimidin derivatives as selective type II c-Met/Axl inhibitors with potent antitumor efficacy.

Bioorg Chem

January 2025

Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. Electronic address:

In this study, we reported the discovery of a novel type II c-Met/Axl inhibitor, characterized by using 4-amino-7H-pyrrolo[2,3-d]pyrimidine as a hinge region binder. Through a systematic exploration of the structure-activity relationship, based on the clinically reported c-Met inhibitor BMS-777607, we identified the optimized compound 22a. 22a exhibited remarkable potency against c-Met and Axl kinases, with IC values of 1 nM and 10 nM, respectively, and demonstrated over 100-fold selectivity to other members of the TAM subfamily.

View Article and Find Full Text PDF

Background: The incidence of papillary thyroid carcinoma (PTC) is on the rise globally. It is frequently associated with early lymphatic metastasis, and the poor prognosis tends to be poor once metastasis or recurrence occurs, even with current treatment modalities. Kushenol O, a novel extract derived from Sophora flavescens, has shown remarkable anticancer properties.

View Article and Find Full Text PDF

Breast cancer is one of the most aggressive types of cancer, and its early diagnosis is crucial for reducing mortality rates and ensuring timely treatment. Computer-aided diagnosis systems provide automated mammography image processing, interpretation, and grading. However, since the currently existing methods suffer from such issues as overfitting, lack of adaptability, and dependence on massive annotated datasets, the present work introduces a hybrid approach to enhance breast cancer classification accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!