Pericellular pH affects distribution and secretion of cathepsin B in malignant cells.

Cancer Res

Department of Pharmacology, Wayne State University, Detroit, Michigan 48201.

Published: December 1994

Redistribution of lysosomes to the cell surface and secretion of lysosomal proteases appear to be general phenomena in cells that participate in local proteolysis. In the present study, we have determined whether malignant progression affects the intracellular distribution and secretion of the lysosomal protease cathepsin B in three model systems, each of which consists of cell pairs that differ in their degree of malignancy. The intracellular distribution of vesicles staining for cathepsin B was evaluated by immunofluorescent microscopy and the secretion of cathepsin B was evaluated by two complementary techniques: stopped assays of activity secreted into culture media; and continuous assays of activity secreted from viable (> or = 95%) cells growing on coverslips. We observed that the intracellular distribution of cathepsin B+ vesicles was more peripheral in the cells of higher malignancy in all three model systems and that active cathepsin B was secreted constitutively from these cells. Because an acidic pericellular pH has been shown to induce translocation of lysosomes in macrophages and fibroblasts, we evaluated the intracellular distribution of cathepsin B+ vesicles and secretion of cathepsin B in cell pairs incubated at slightly acidic pH. Acidic pericellular pH induced a redistribution of cathepsin B+ vesicles toward the cell periphery. In the more malignant cells, this resulted with time in reduced intracellular staining for cathepsin B and enhanced secretion of active cathepsin B. Translocation and secretion of cathepsin B were dependent on a functional microtubular system. Both the redistribution of cathepsin B+ vesicles toward the cell surface induced by acidic pH and the constitutive and acidic pH-induced secretion of active cathepsin B could be inhibited by microtubule poisons and stabilizers. We suggest that the redistribution of active cathepsin B to the surface of malignant cells and its secretion may facilitate invasion of these cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

secretion cathepsin
16
intracellular distribution
16
cathepsin vesicles
16
active cathepsin
16
cathepsin
15
malignant cells
12
secretion
9
distribution secretion
8
cells
8
cell surface
8

Similar Publications

Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for causing the Coronavirus disease 2019 (COVID-19) outbreak. While mutations cause the emergence of new variants, the ancestral SARS-CoV-2 strain is unique among other strains. Various clinical parameters, the activity of cathepsin proteases, and the concentration of various proteins were measured in urine samples from COVID-19-negative participants and COVID-19-positive participants.

View Article and Find Full Text PDF

A human epidermal growth factor receptor 2 (HER2)-specific nanobody called 2Rs15d, containing a His3LysHis6 segment at the C-terminus, was recombinantly produced. Subsequent site-selective acylation on the C-terminally activated lysine residue allowed installation of the cytotoxin monomethyl auristatin E-functionalized cathepsin B-sensitive payload to provide a highly homogenous nanobody-drug conjugate (NBC), which demonstrated high potency and selectivity for HER2-positive breast cancer models.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by extracellular amyloid plaques, predominantly consisting of amyloid- (A) peptides. The oligomeric form of A is acknowledged as the most neurotoxic, propelling the pathological progression of AD. Interestingly, besides A, other proteins are co-localized within amyloid plaques.

View Article and Find Full Text PDF

Plasmin, the final product of fibrinolysis, is a broad-spectrum serine protease that degrades extracellular matrix (ECM) components, a function exploited by multiple pathogens for dissemination purposes. The trematode Fasciola hepatica is the leading cause of fasciolosis, a major disease of livestock and an emerging zoonosis in humans. Infection success depends on the ability of F.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!