To better understand the molecular mechanisms responsible for meningioma tumorigenesis we previously utilized subtractive hybridization protocols to identify genes the expression or structure of which is altered in these common brain tumors. Here we show that a CA dinucleotide repeat element present in one complementary DNA isolated by this approach has undergone a contraction in size in a meningioma cell line. Extension of this initial observation has revealed widespread genetic alterations affecting simple repeat sequences in this and other meningiomas. These data indicate that genetic instability may play a previously unrecognized role in the etiology of meningiomas.

Download full-text PDF

Source

Publication Analysis

Top Keywords

identification microsatellite
4
microsatellite instability
4
instability phenotype
4
phenotype meningiomas
4
meningiomas better
4
better understand
4
understand molecular
4
molecular mechanisms
4
mechanisms responsible
4
responsible meningioma
4

Similar Publications

Krait2: a versatile software for microsatellite investigation, visualization and marker development.

BMC Genomics

January 2025

Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China.

Background: Microsatellites are highly polymorphic repeat sequences ubiquitously interspersed throughout almost all genomes which are widely used as powerful molecular markers in diverse fields. Microsatellite expansions play pivotal roles in gene expression regulation and are implicated in various neurological diseases and cancers. Although much effort has been devoted to developing efficient tools for microsatellite identification, there is still a lack of a powerful tool for large-scale microsatellite analysis.

View Article and Find Full Text PDF

Background/objectives: Chrysanthemum (), a key ornamental and medicinal plant, presents challenges in cultivar identification due to high phenotypic similarity and environmental influences. This study assessed the genetic diversity and discrimination of 126 spray-type chrysanthemum cultivars.

Methods: About twenty-three simple sequence repeat (SSR) markers were screened for the discrimination of 126 cultivars, among which six SSR markers showed polymorphic fragments.

View Article and Find Full Text PDF

Exploring the Potential of Genome-Wide Hybridization Capture Enrichment for Forensic DNA Profiling of Degraded Bones.

Genes (Basel)

December 2024

Australian Centre for Ancient DNA, The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5000, Australia.

Unlabelled: In many human rights and criminal contexts, skeletal remains are often the only available samples, and they present a significant challenge for forensic DNA profiling due to DNA degradation. Ancient DNA methods, particularly capture hybridization enrichment, have been proposed for dealing with severely degraded bones, given their capacity to yield results in ancient remains.

Background/objectives: This paper aims to test the efficacy of genome-wide capture enrichment on degraded forensic human remains compared to autosomal STRs analysis.

View Article and Find Full Text PDF

From Genes to Clinical Practice: Exploring the Genomic Underpinnings of Endometrial Cancer.

Cancers (Basel)

January 2025

SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa.

Endometrial cancer (EC), a prevalent gynecological malignancy, presents significant challenges due to its genetic complexity and heterogeneity. The genomic landscape of EC is underpinned by genetic alterations, such as mutations in PTEN, PIK3CA, and ARID1A, and chromosomal abnormalities. The identification of molecular subtypes-POLE ultramutated, microsatellite instability (MSI), copy number low, and copy number high-illustrates the diverse genetic profiles within EC and underscores the need for subtype-specific therapeutic strategies.

View Article and Find Full Text PDF

The role of metabolic reprogramming of the tumor immune microenvironment in cancer development and immune escape has increasingly attracted attention. However, the predictive value of differences in metabolism-immune microenvironment on the prognosis of colon cancer (CC) and the response to immunotherapy have not been elucidated. The aim of this study was to investigate changes in metabolism and immune profile of CC and to identify a reliable signature for predicting prognosis and therapeutic response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!