Phospholipid liposomes have been prepared from phospholipid mixtures including dipalmitoylphosphatidylcholine/phosphatidylinositol (DPPC/PI) and DPPC/dipalmitoylphosphatidylglycerol (DPPC/DPPG) mixtures and targeted to adsorbed biofilms of the skin-associated bacteria Staphylococcus epidermidis and Proteus vulgaris and the oral bacterium Streptococcus sanguis. The effects of time, liposome concentration and density of bacteria in the biofilm have been studied in detail for Staphylococcus epidermidis. The targeting (as assessed by the apparent monolayer coverage of the biofilms by liposomes) to the biofilms was found to be sensitive to the mol% of PI and DPPG in the liposomes and optimum levels of PI were found for targeting to each bacterium. The use of PI and DPPG-containing liposomes for the delivery of the bactericide, Triclosan, to biofilms of Staphylococcus epidermidis was studied as a function of the amount of Triclosan carried by the liposomes. All the liposome systems tested inhibited the growth of bacteria from the biofilms after brief (2 min) exposure to Triclosan-carrying liposomes. At low Triclosan levels bacterial growth inhibition by Triclosan-carrying liposomes exceeded that by an equivalent level of free Triclosan. After short periods (min) of exposure of biofilms to Triclosan-carrying liposomes the bactericide was shown to preferentially concentrate in the biofilms relative to its liposomal lipid carrier. The results suggest that phospholipid liposomes with appropriately chosen lipid composition have potential for the targeting and delivery of bactericide to bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0005-2736(94)90295-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!