Na+,K(+)-ATPase was reconstituted in vesicles prepared by a dialysis method. Ion-exchange chromatography was used to obtain well characterized fractions from the inhomogeneous vesicle preparation. Lipid and protein content was determined by optical methods during the elution process. It was possible to separate fractions with distinct enzymatic and transport activities. A protocol was set up, which allowed to calculate the average number of 5-IAF labeled ion pumps per vesicle in the different fractions. The dependence of the number of protein molecules per vesicle was studied as function of the initial protein concentration added to the lipid solution before dialysis. The transport activity disappears completely at very low protein concentrations (3.3 micrograms protein per mg lipid). This observation is in favor of the proposal discussed in the literature, that the heterodimer (alpha beta)2 is the transport-active form of the Na+,K(+)-ATPase. The presented method can be applied to all reconstituted vesicle preparations in which the proteins can be labeled quantitatively with a fluorescence dye.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2736(94)90291-7DOI Listing

Publication Analysis

Top Keywords

protein
5
separation characterization
4
characterization na+k+-atpase
4
na+k+-atpase vesicles
4
vesicles na+k+-atpase
4
na+k+-atpase reconstituted
4
reconstituted vesicles
4
vesicles prepared
4
prepared dialysis
4
dialysis method
4

Similar Publications

Transcriptome and translatome profiling of Col-0 and grp7grp8 under ABA treatment in Arabidopsis.

Sci Data

December 2024

Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.

Abscisic acid (ABA) is a crucial phytohormone that regulates plant growth and stress responses. While substantial knowledge exists about transcriptional regulation, the molecular mechanisms underlying ABA-triggered translational regulation remain unclear. Recent advances in deep sequencing of ribosome footprints (Ribo-seq) enable the mapping and quantification of mRNA translation efficiency.

View Article and Find Full Text PDF

Introduction: Heavy metal pollution threatens the biodiversity and ecological equilibrium of the Nile River. This study investigates the impact of heavy metal pollution on aquatic animals such as Nile tilapia (Oreochromis niloticus) in the Damietta branch of the River Nile and El-Rayah El-Tawfeeky canal in Benha City in Egypt.

Methods: Fish and water samples were collected from the Damietta branch and El-Rayah El-Tawfeeky during the fall of 2022.

View Article and Find Full Text PDF

Background: High-temperature environment can cause acute kidney injury affecting renal filtration function. To study the mechanism of renal injury caused by heat stress through activates TLR4/NF-κB/NLRP3 signaling pathway by disrupting the filtration barrier in broiler chickens. The temperature of broilers in the TN group was maintained at 23 ± 1 °C, and the HS group temperature was maintained at 35 ± 1℃ from the age of 21 days, and the high temperature was 10 h per day, and one broiler from each replicate group at the age of 35 and 42 days was selected for blood sampling, respectively.

View Article and Find Full Text PDF

PP2A-Tws dephosphorylates Map205, is required for Polo localization to microtubules and promotes cytokinesis in Drosophila.

Cell Div

December 2024

Institute for Research in Immunology and Cancer, Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Québec, Canada.

Background: Mitosis and cytokinesis are regulated by reversible phosphorylation events controlled by kinases and phosphatases. Drosophila Polo kinase, like its human ortholog PLK1, plays several roles in this process. Multiple mechanisms contribute to regulate Polo/PLK1 activity, localization and interactions.

View Article and Find Full Text PDF

As molecular research on hemp (Cannabis sativa L.) continues to advance, there is a growing need for the accumulation of more diverse genome data and more accurate genome assemblies. In this study, we report the three-way assembly data of a cannabidiol (CBD)-rich cannabis variety, 'Pink Pepper' cultivar using sequencing technology: PacBio Single Molecule Real-Time (SMRT) technology, Illumina sequencing technology, and Oxford Nanopore Technology (ONT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!