Purpose: To characterize the gadopentetate dimeglumine-enhanced MR features of recurrent medulloblastoma.

Methods: The postsurgical gadopentetate dimeglumine-enhanced MR images of 48 patients (206 head examinations) with prior resection of medulloblastoma were retrospectively evaluated for enhancement in the brain parenchyma, meninges (dura, pia-arachnoid), and ventricles.

Results: Nineteen patients had recurrent tumor as determined by clinical course and positive imaging studies. Seventeen patients with recurrent disease had intracranial enhancement predominating in the pia-arachnoid (63%) or as a focal nodular brain lesion (26%). Three of these patients also had intraventricular metastases. None of the clinically healthy patients had these findings. One patient had recurrent tumor presenting within the fourth ventricle. Only 3 of 8 intraventricular lesions observed in the 4 patients initially enhanced with gadopentetate dimeglumine. Another patient with recurrent disease had extensive skeletal metastases without involvement of the central nervous system. Dural enhancement was observed in patients both with (42%) and without (38%) recurrent tumor.

Conclusion: The MR findings of pia-arachnoidal or focal nodular brain enhancement are highly specific in the diagnosis of recurrent medulloblastoma. Pia-arachnoidal or focal brain enhancement were also the most frequent patterns associated with recurrent tumor. Dural enhancement alone is not a reliable indicator of recurrent medulloblastoma. Not all intraventricular metastases enhance with gadopentetate dimeglumine, and careful evaluation for nonenhancing lesions within the ventricles should be made on postoperative MR examinations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8334399PMC

Publication Analysis

Top Keywords

gadopentetate dimeglumine
12
recurrent tumor
12
recurrent
9
gadopentetate dimeglumine-enhanced
8
patients recurrent
8
recurrent disease
8
focal nodular
8
nodular brain
8
intraventricular metastases
8
patient recurrent
8

Similar Publications

Background: Improvements in the clinical diagnostic use of magnetic resonance imaging (MRI) for the identification of liver disorders have been made possible by gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA). Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) technology is in high demand.

Objectives: The purpose of the study is to segment the liver using an enhanced multi-gradient deep convolution neural network (EMGDCNN) and to identify and categorize a localized liver lesion using a Gd-EOB-DTPA-enhanced MRI.

View Article and Find Full Text PDF

The widespread use of gadolinium-based contrast agents for magnetic resonance imaging (MRI) in recent decades has led to a growing demand for Gd and raised environmental concerns due to their direct discharge into wastewater systems. In response, we developed an electrochemical filtration method to recover Gd from patient urine following contrast-enhanced MRI. This method involves modifying a conventional vacuum filtration apparatus by introducing electrodes into the filter membrane, creating a strong electric field of ∼5 kV/m and a steep three-zone pH gradient within the filter membrane.

View Article and Find Full Text PDF

Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).

View Article and Find Full Text PDF

Background: Focal nodular hyperplasia (FNH)-like lesions are hyperplastic formations in patients with micronodular cirrhosis and a history of alcohol abuse. Although pathologically similar to hepatocellular carcinoma (HCC) lesions, they are benign. As such, it is important to develop methods to distinguish between FNH-like lesions and HCC.

View Article and Find Full Text PDF

Cine-magnetic resonance imaging (MRI) has been used to track respiratory-induced motion of the liver and tumor and assist in the accurate delineation of tumor volume. Recent developments in compressed sensitivity encoding (SENSE; CS) have accelerated temporal resolution while maintaining contrast resolution. This study aimed to develop and assess hepatobiliary phase (HBP) cine-MRI scans using CS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!