Excitation of afferent fibres originating in the ventral subiculum of the hippocampus through stimulation of the fimbria elicits field potentials in the nucleus accumbens. When recorded in the dorsomedial aspect of the nucleus accumbens, the evoked field responses consisted of an early, negative-going component (N1) with a peak latency of 8-10 ms, followed by a second negative-going peak (N2) with a latency of 22-24 ms. The N1 response reflects monosynaptic activation of nucleus accumbens neurons; the N2 component appears to be polysynaptic in origin. In control rats, high-frequency stimulation of the fimbria (three trains at 250 Hz, 250 ms, delivered at 50 min intervals) resulted in a long-lasting potentiation of both the N1 and N2 components. The magnitude of potentiation exhibited by the polysynaptic N2 response was typically greater than that of the monosynaptically evoked N1 response. Following delivery of the first train, the amplitude of the N1 and N2 components was increased by approximately 20 and 50% respectively. Administration of the competitive N-methyl-D-aspartate (NMDA) receptor antagonist 3-[(+-)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP, 10 mg/kg i.p.) had no significant effects on the evoked nucleus accumbens responses. High-frequency stimulation failed to produce a significant increase in the amplitude of either the N1 or the N2 response when delivered 45-60 min after CPP administration. To test whether the suppressant effects of CPP were time-dependent, two further high-frequency trains were applied 90 and 180 min after administration of the drug.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.1994.tb00314.xDOI Listing

Publication Analysis

Top Keywords

nucleus accumbens
16
nmda receptor
8
receptor antagonist
8
stimulation fimbria
8
peak latency
8
high-frequency stimulation
8
cpp
4
antagonist cpp
4
cpp suppresses
4
suppresses long-term
4

Similar Publications

Background: Recent studies suggest that the anterior limb of the internal capsule may be an area of convergence for multiple compulsion loops. In this study, the role of different dopaminergic compulsion loops in the mechanism of obsessive-compulsive disorder (OCD) was investigated by selectively damaging dopaminergic neurons or fibers in the corresponding targets with 6-hydroxydopamine (6-OHDA) and depicting the anatomical map of various compulsion loops located in the anterior limb of the internal capsule.

Methods: A total of 52 male Sprague Dawley (SD) rats were exposed to either saline (1 mL/kg, NS group, n = 6) or quinpirole (QNP, dopamine D2-agonist, 0.

View Article and Find Full Text PDF

Background/objectives: Cocaine use disorder is an intersecting issue in populations with HIV-1, further exacerbating the clinical course of the disease and contributing to neurotoxicity and neuroinflammation. Cocaine and HIV neurotoxins play roles in neuronal damage during neuroHIV progression by disrupting glutamate homeostasis in the brain. Even with combined antiretroviral therapy (cART), HIV-1 Nef, an early viral protein expressed in approximately 1% of infected astrocytes, remains a key neurotoxin.

View Article and Find Full Text PDF

Contextual cues facilitate dynamic value encoding in the mesolimbic dopamine system.

Curr Biol

January 2025

Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:

Adaptive behavior in a dynamic environmental context often requires rapid revaluation of stimuli that deviates from well-learned associations. The divergence between stable value-encoding and appropriate behavioral output remains a critical component of theories of dopamine's function in learning, motivation, and motor control. Yet, how dopamine neurons are involved in the revaluation of cues when the world changes, to alter our behavior, remains unclear.

View Article and Find Full Text PDF

Successful resolution of approach-avoidance conflict (AAC) is fundamentally important for survival, and its dysregulation is a hallmark of many neuropsychiatric disorders, and yet the underlying neural circuit mechanisms are not well elucidated. Converging human and animal research has implicated the anterior/ventral hippocampus (vHPC) as a key node in arbitrating AAC in a region-specific manner. In this study, we sought to target the vHPC CA1 projection pathway to the nucleus accumbens (NAc) to delineate its contribution to AAC decision-making, particularly in the arbitration of learned reward and punishment signals, as well as innate signals.

View Article and Find Full Text PDF

The Comorbidity of Depression and Diabetes Is Involved in the Decidual Protein Induced by Progesterone 1 (Depp1) Dysfunction in the Medial Prefrontal Cortex.

Metabolites

January 2025

Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.

Background: There is a high rate of depressive symptoms such as irritability, anhedonia, fatigue, and hypersomnia in patients with type 2 diabetes mellitus (T2DM). However, the causes and underlying mechanisms of the comorbidity of depression and diabetes remain unknown.

Methods: For the first time, we identified Decidual protein induced by progesterone 1 (Depp1), also known as DEPP autophagy regulator 1, as a hub gene in both depression and T2DM models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!