The 10 Met methyl groups in recombinant cardiac troponin (cTnC) were metabolically labeled with [13C-methyl]Met and detected as 10 individual cross-peaks using two-dimensional heteronuclear single- and multiple-quantum coherence (HSMQC) spectroscopy. The epsilon C and epsilon H chemical shifts for all 10 Met residues were sequence-specifically assigned using a combination of HSMQC and systematic conversion of the Met residues to Leu. The only negative functional consequence of these changes was seen when both Met 45 and 81 were mutated. Binding of Ca2+ to the high affinity C-terminal sites III and IV induced relatively large changes in the epsilon H and epsilon C chemical shifts of all Met residues in the C-terminal domain as well as small but significant changes in the chemical shifts of epsilon H Met 47 and Met 81 in the N-terminal half of cTnC. Binding of Ca2+ to the low affinity N-terminal site II induced large changes in the epsilon H and epsilon C chemical shifts of Met 45, Met 80, and Met 81. Binding of Ca2+ to site II had no effect on the chemical shifts of Met residues located in the C-terminal domain. The nature of the chemical shift changes of Met residues in the N- versus the C-terminal halves of cTnC were consistent with different Ca(2+)-induced conformational changes in these domains. Thus, the assigned methyl Met chemical shifts can serve as useful structural markers to study conformational transitional in free cTnC and potentially after association with small ligands, peptides, and other troponin subunits.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00252a009DOI Listing

Publication Analysis

Top Keywords

chemical shifts
24
met residues
20
epsilon epsilon
16
shifts met
16
met
13
epsilon chemical
12
binding ca2+
12
met met
12
epsilon
9
cardiac troponin
8

Similar Publications

Impacts of ammoniacal odour removal bioagent on air bacterial community.

Adv Biotechnol (Singap)

February 2024

School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.

While biotechnologies offer eco-friendly solutions for eliminating air contaminants, there is a scarcity of research examining the impacts of microbial purification of air pollutants on the structure and function of air microbial communities. In this study, we explored a Lactobacillus paracasei B1 (LAB) agent for removing ammoniacal odour. The impacts of LAB on air bacterial community were revealed.

View Article and Find Full Text PDF

Chamilactones A and B, Sesquiterpenes from the Endophytic Fungus F5.

J Nat Prod

January 2025

Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China.

A bioassay-guided chemical investigation of the endophytic fungus F5 resulted in the discovery of two novel sesquiterpenes, chamilactones A and B ( and ), with a new 9,10-seco-15--isoilludalane carbon skeleton, together with several biosynthetically related precursors (-). Their structures and absolute configurations were elucidated by the analysis of MS, NMR, calculated C chemical shifts, ECD calculations, and single-crystal X-ray diffraction data. It was proposed that an unprecedented carbon-carbon bond cleavage between C-9 and C-10 in - was the key step in the biosynthetic pathway of and .

View Article and Find Full Text PDF

Imine-containing azaarene-based triarylmethanes are vital molecular motifs that are prevalent in a wide array of bioactive compounds. Recognizing the limitations of current synthetic methodologies─marked by a scarcity of examples and difficulties in flexible functional group modulation─we have developed an efficient and modular asymmetric photochemical strategy employing pyridotriazoles and boronic acids as substrates. Utilizing novel chiral diamine-derived pyrroles and primary amines as catalysts, we successfully synthesized a diverse range of triarylmethanes with high yields and excellent enantioselectivities.

View Article and Find Full Text PDF

In Arabidopsis thaliana, micro-RNA regulation is primarily controlled by DCL1, an RNase III enzyme, and its associated proteins. DCL1, together with DRB2, governs a specific group of miRNAs that induce the inhibition of target mRNA translation. DRB2 is a multi-domain protein containing two N-terminal dsRNA binding domains (dsRBD) separated by a linker, followed by an unstructured C-terminal tail.

View Article and Find Full Text PDF

H, N, C backbone resonance assignment of human Alkbh7.

Biomol NMR Assign

January 2025

Department of Chemistry, Iowa State University, Hach Hall, 2438 Pammel Drive, Ames, IA, 50011, USA.

The Alkbh7 protein, a member of the Alkylation B (AlkB) family of dioxygenases, plays a crucial role in epigenetic regulation of cellular metabolism. This paper focuses on the NMR backbone resonance assignment of Alkbh7, a fundamental step in understanding its three-dimensional structure and dynamic behavior at the atomic level. Herein, we report the backbone H, N, C chemical shift assignment of the full-length human Alkbh7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!