Carbachol induces calcium-dependent chloride secretion and activates protein kinase C in T84 cells. However, prolonged stimulation with carbachol or direct activation of protein kinase C inhibits subsequent calcium-dependent chloride secretion. Furthermore, the ability of carbachol to elevate inositol tetrakisphosphate levels may be linked to inhibition of chloride secretion. Here we demonstrate that protein kinase C activation increases levels of inositol tetrakisphosphates (1,3,4,6- and 3,4,5,6-isomers) in T84 colonic epithelia. Furthermore, this corresponds to an inhibition of chloride secretion. However, protein kinase C is unlikely to mediate the analogous effects of carbachol. Neither the ability of carbachol to inhibit calcium-dependent chloride secretion nor its effects on inositol 3,4,5,6-tetrakisphosphate levels were reversed by staurosporine. Carbachol also has quantitatively and qualitatively different effects on inositol tetrakisphosphate isomers than protein kinase C activators. Thus protein kinase C activity can increase levels of various inositol tetrakisphosphate isomers within T84 cells but does not mediate carbachol-induced increases in these putative messengers. These data further support the hypothesis that inositol 3,4,5,6-tetrakisphosphate is a negative second messenger, uncoupling epithelial chloride secretion from changes in intracellular calcium.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.1994.267.5.C1224DOI Listing

Publication Analysis

Top Keywords

protein kinase
28
chloride secretion
28
t84 cells
12
calcium-dependent chloride
12
inositol tetrakisphosphate
12
kinase activity
8
ability carbachol
8
inhibition chloride
8
levels inositol
8
effects inositol
8

Similar Publications

Background: Hepatocellular carcinoma (HCC) is one of the most common and highly lethal cancers worldwide. RIO kinase 1 (RIOK1), a protein kinase/ATPase that plays a key role in regulating translation and ribosome assembly, is associated with a variety of malignant tumors. However, the role of RIOK1 in HCC remains largely unknown.

View Article and Find Full Text PDF

TBCK (TBC1 Domain-Containing Kinase) encodes a protein playing a role in actin organization and cell growth/proliferation via the mTOR signaling pathway. Deleterious biallelic TBCK variants cause Hypotonia, infantile, with psychomotor retardation and characteristic facies 3. We report on three affected sibs, also displaying cardiac malformations.

View Article and Find Full Text PDF

Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence.

View Article and Find Full Text PDF

Multi-gene panel testing allows efficient detection of pathogenic variants in cancer susceptibility genes including moderate-risk genes such as ATM and PALB2. A growing number of studies examine the risk of breast cancer (BC) conferred by pathogenic variants of these genes. A meta-analysis combining the reported risk estimates can provide an overall estimate of age-specific risk of developing BC, that is, penetrance for a gene.

View Article and Find Full Text PDF

Background: Immunotherapy is a significant risk factor for severe COVID-19 in multiple myeloma (MM) patients. Understanding how immunotherapies lead to severe COVID-19 is crucial for improving patient outcomes.

Methods: Human protein microarrays were used to examine the expression of 440 protein molecules in MM patients treated with bispecific T-cell engagers (BiTe) (n = 9), anti-CD38 monoclonal antibodies (mAbs) (n = 10), and proteasome inhibitor (PI)-based regimens (n = 10).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!