A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. | LitMetric

AI Article Synopsis

  • Embryonic motoneurons in vertebrates rely on unknown neurotrophic factors for survival, with neurotrophins being the primary candidates but insufficient alone due to partial loss when their receptors are inactive.
  • Glial cell line-derived neurotrophic factor (GDNF) has shown to be significantly more effective than neurotrophins in promoting the survival of motoneurons in lab settings, suggesting it plays a crucial role during their development.
  • GDNF not only aids in the survival of motoneurons deprived of other factors but also holds promise as a potential treatment for motoneuron diseases due to its potency and specificity.

Article Abstract

For survival, embryonic motoneurons in vertebrates depend on as yet undefined neurotrophic factors present in the limb bud. Members of the neurotrophin family are currently the best candidates for such neurotrophic factors, but inactivation of their receptor genes leads to only partial loss of motoneurons, which suggests that other factors are involved. Glial cell line-derived neurotrophic factor (GDNF), originally identified as a trophic factor specific for dopaminergic neurons, was found to be 75-fold more potent than the neurotrophins in supporting the survival of purified embryonic rat motoneurons in culture. GDNF messenger RNA was found in the immediate vicinity of motoneurons during the period of cell death in development. In vivo, GDNF rescues and prevents the atrophy of facial motoneurons that have been deprived of target-derived survival factors by axotomy. GDNF may therefore be a physiological trophic factor for spinal motoneurons. Its potency and specificity in vitro and in vivo also make it a good candidate for treatment of motoneuron disease.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.7973664DOI Listing

Publication Analysis

Top Keywords

neurotrophic factors
8
trophic factor
8
motoneurons
7
gdnf
5
gdnf potent
4
survival
4
potent survival
4
factor
4
survival factor
4
factor motoneurons
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!