Because we believe that macrophage-derived nitric oxide contributes to pathology of demyelinating diseases, we have determined the differential effects of nitric oxide on primary rat glial cells in vitro. Enriched cultures of microglia, astrocytes and oligodendrocytes were treated with S-nitroso,N-acetyl-DL-penicillamine, a nitric oxide-releasing chemical. There was a significantly decreased function of one of the ferrosulfur-containing mitochondrial enzymes after S-nitroso,N-acetyl-DL-penicillamine/nitric oxide treatment in oligodendrocytes and astrocytes compared to microglia, which were much less sensitive to S-nitroso,N-acetyl-DL-penicillamine/nitric oxide at all concentrations. At 0.5 mM S-nitroso,N-acetyl-DL-penicillamine/nitric oxide, astrocytes and oligodendrocytes suffered a 40% loss in succinate dehydrogenase activity, while microglia were unaffected. A control non-ferrosulfur-containing mitochondrial enzyme, isocitrate dehydrogenase, was not affected in any glial cell type. Although the per cent of mitochondrial damage in oligodendrocytes and astrocytes was the same for all concentrations of S-nitroso,N-acetyl-DL-penicillamine/nitric oxide, significant cell death occurred in oligodendrocytes at 1.0 mM; at this concentration there was no significant killing of microglia or astrocytes. Furthermore, at a 0.5 mM concentration of S-nitroso,N-acetyl-DL-penicillamine/nitric oxide, which inhibited mitochondrial respiration but did not kill oligodendrocytes, significant changes in oligodendrocyte morphology (e.g. retraction of processes) occurred. Morphological changes were not seen in microglia and astrocytes at any concentration of S-nitroso,N-acetyl-DL-penicillamine/nitric oxide. In addition, oligodendrocytes were more sensitive to S-nitroso,N-acetyl-DL-penicillamine/nitric oxide-induced single stranded DNA breaks than microglia or astrocytes. The mitochondrial damage was attributable to nitric oxide since N-acetyl-DL-penicillamine had no effect. Oxyhemoglobin, which competitively inhibits toxic effects of nitric oxide, protected these glial cells from mitochondrial damage, single stranded breaks in DNA and cell death in a time- and dose-dependent manner. Once again, oligodendrocytes were less easily rescued from nitric oxide effects by oxyhemoglobin than were astrocytes, suggesting greater vulnerability of the myelin-producing cell to nitric oxide. These findings suggest that there is differential sensitivity of glial cells to nitric oxide. Although oligodendrocytes and astrocytes are equally susceptible to nitric oxide-induced mitochondrial damage, oligodendrocytes are more sensitive to nitric oxide-induced single stranded DNA breaks, morphological changes and cell death. Compared to both oligodendrocytes and astrocytes, microglia, nitric oxide-producing cells, are resistant to nitric oxide-induced damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0306-4522(94)90435-9DOI Listing

Publication Analysis

Top Keywords

nitric oxide
32
s-nitroson-acetyl-dl-penicillamine/nitric oxide
24
glial cells
16
microglia astrocytes
16
oligodendrocytes astrocytes
16
mitochondrial damage
16
nitric
13
oxide
13
cell death
12
single stranded
12

Similar Publications

Metabolically stable apelin analogs: development and functional role in water balance and cardiovascular function.

Clin Sci (Lond)

January 2025

Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.

Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.

View Article and Find Full Text PDF

Nitric oxide synthase inhibitors reduce the formation of neutrophil extracellular traps and alleviate airway inflammation in the mice model of asthma.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China.

Asthma, a widespread chronic inflammatory disease can contribute to different degrees of lung function damage. The objective of this study is to explore the potential effects of nitric oxide synthase (NOS) inhibitors in asthma using mice model induced by ovalbumin (OVA). BALB/c mice were treated with OVA to establish an asthma model.

View Article and Find Full Text PDF

Exaggerated neuronal excitation by glutamate is a well-known cause of excitotoxicity, a key factor in numerous neurodegenerative disorders. This study examined the neurotoxic effect of monosodium glutamate (MSG) in the brain cortex of rats and focused on assessing the potential neuroprotective effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs). Four groups of adult male rats (n = 10) were assigned as follows; normal control, ω-3 PUFAs (400 mg/kg) alone, MSG (4 mg/g) alone, and MSG plus ω-3 PUFAs (4 mg/g MSG plus 400 mg/kg ω-3 PUFAs).

View Article and Find Full Text PDF

Quercetin (QE), a particular flavonoid, is well known for its medicinal effects, including anti-oxidant, hypoglycemic, and anti-inflammatory effects. In this review, the findings of QE effects on diabetes STZinduced, alloxan-induced, and its complications have been summarized with a particular focus on in vitro, in vivo, and clinical trials. Consequently, QE mediates several mechanisms, including ameliorating tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin (IL)-1β, IL-8, and IL-10 expression, increasing insulin glucose uptake to inhibit insulin resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!