A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Malignant melanoma metastasis to brain: role of degradative enzymes and responses to paracrine growth factors. | LitMetric

Mouse and human melanoma cells metastatic to the brain express degradative enzyme activities that are used for invasion of brain basement membrane and parenchyma. Compared to poorly metastatic or lung- or ovary-metastatic murine melanoma lines, the brain-metastatic sublines secreted higher levels of a variety of degradative enzymes. Brain-metastatic murine and human melanoma cells also degraded subendothelial basement membrane and reconstituted basement membrane at rates higher than other metastatic melanoma cells. In some cases these degradative activities in mouse and human melanoma cells can be induced by paracrine factors known to be present in the brain parenchyma, such as nerve growth factor (NGF). NGF stimulates the expression of degradative enzymes, such as the endo-beta-glucuronidase heparanase, that are important in basement membrane penetration but this factor does not stimulate melanoma cell growth. The growth of brain-metastasizing melanoma cells appears to be stimulated by other paracrine growth factors, such as paracrine transferrin. Melanoma cells metastatic to brain express higher numbers of transferrin receptors and respond and proliferate at lower concentrations of transferrin than do melanoma cells metastatic to other sites or poorly metastatic melanoma cells. The results suggest that degradation and invasion of brain basement membrane and responses to paracrine neurotrophins and paracrine transferrins are important properties in brain metastasis of murine and human malignant melanoma cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01050420DOI Listing

Publication Analysis

Top Keywords

melanoma cells
36
basement membrane
20
degradative enzymes
12
human melanoma
12
cells metastatic
12
melanoma
11
cells
9
malignant melanoma
8
responses paracrine
8
paracrine growth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!