Oxidative capacity distribution in skeletal muscle fibers of the rat.

J Exp Biol

Department of Physiology and Biophysics, School of Medicine, University of Puerto Rico, San Juan 00936.

Published: April 1994

To study the distribution of oxidative capacity in muscle fibers, mitochondrial volume density and the oxidative capacity of isolated mitochondria were evaluated. Mitochondria were isolated from the subsarcolemmal and interfibrillar areas of the soleus (a muscle largely made up of slow oxidative fibers) and the gastrocnemius medial head (a muscle largely made up of fast glycolytic fibers) of the rat, and their oxidative capacities were evaluated using NADH- and FADH-generating substrates. In the soleus muscle, the subsarcolemmal mitochondria showed a lower oxidative capacity than interfibrillar mitochondria when NADH-generating substrates were used. This difference was not observed when FADH-generating substrates were used. In the gastrocnemius, there were no differences in the oxidative capacity of the subsarcolemmal and the interfibrillar mitochondria. Additionally, citrate synthase activity was found to be lower in mitochondria isolated from the subsarcolemmal area of the soleus than in the other mitochondrial preparations. These findings indicate that the difference in oxidative capacity of the isolated mitochondria is not related to differences in the inner mitochondrial membranes. Mitochondrial volume density was evaluated using electron micrographs of the subsarcolemmal and interfibrillar areas of slow oxidative fibers from the soleus and fast glycolytic fibers from the gastrocnemius. In the slow oxidative fibers, mitochondrial volume density in the subsarcolemmal area was four times higher than in the interfibrillar area. In the fast glycolytic fibers, mitochondrial volume densities in the subsarcolemmal and interfibrillar areas did not differ from that of the interfibrillar area of the slow oxidative fibers. The oxidative capacity of the tissue, calculated by multiplying the mitochondrial oxidative capacities by the mitochondrial volume densities, was 2-4 times higher in the subsarcolemmal areas of the soleus fibers than in the other areas studied. This was true in spite of the fact that the oxidative capacity of the subsarcolemmal mitochondria of the slow oxidative fibers was lower than those of the other mitochondrial populations studied. These results indicate that the difference in oxidative capacity between slow oxidative fibers and fast glycolytic fibers is the result of the much greater mitochondrial volume density in the subsarcolemmal area of the slow oxidative fibers.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.189.1.1DOI Listing

Publication Analysis

Top Keywords

oxidative capacity
36
slow oxidative
28
oxidative fibers
28
mitochondrial volume
24
oxidative
18
volume density
16
subsarcolemmal interfibrillar
16
fast glycolytic
16
glycolytic fibers
16
fibers
14

Similar Publications

Background: Ferroptosis plays an important role in the development of diabetic nephropathy (DN). However, its specific regulatory mechanisms remain unclear.

Methods: MPC5 cells were cultured in high glucose (HG) medium to stimulate the HG environment in vitro.

View Article and Find Full Text PDF

To concentrate omega-3 fatty acids (-3) in fish oil (FO), olein and super olein fraction (OF) of FO were produced by winterization. For this purpose, FO was slowly cooled to -50°C (24 h), the mixture of crystallized and non-crystallized phases was separated, filtrate was coded as OF (yield 32%), 35% of OF was kept for storage study and analytical purpose, remaining 65% was further slowly cooled down to -75°C (24 h) and filtered, filtrate was coded as super olein (SF, yield 23%). GC-MS analysis showed that unsaturated fatty acids increased due to successive winterization.

View Article and Find Full Text PDF

Background: Para-phenylenediamine (PPD) is a crystalline solid that belongs to the aromatic amine group, widely used in the manufacturing of various dyes. PPD exhibits toxic effects on female hormone stability, ovarian function, and embryo development. Although studies have shown that PPD exposure can damage oocyte quality in female mice, research on its effects on male reproductive capability, particularly on human sperm quality and function, is limited.

View Article and Find Full Text PDF

Background: Obesity is a chronic disease associated with increased risk of multiple metabolic and mental health-related comorbidities. Recent advances in obesity pharmacotherapy, particularly with glucagon-like peptide-1 (GLP-1) receptor agonists (RAs), have the potential to transform obesity and type 2 diabetes mellitus (T2DM) care by promoting marked weight loss, improving glycaemic control and addressing multiple obesity-related comorbidities, with added cardio-renal benefits. Dual agonists combining GLP-1 with other enteropancreatic hormones such as glucose-dependent insulinotropic polypeptide (GIP) have also been developed in recent years, leading to greater weight loss than using GLP-1 RAs alone.

View Article and Find Full Text PDF

Control of HS synthesis by the monomer-oligomer transition of OsCBSX3 for modulating rice growth-immunity balance.

Mol Plant

January 2025

State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China. Electronic address:

Hydrogen sulfide (H2S) is recognized as an important gaseous signaling molecule, similar to nitric oxide and carbon monoxide. However, the synthesis mechanism of H2S and its role in enhancing rice resistance to Xanthomonas oryzae pv. oryzicola (Xoc) and Xanthomonas oryzae pv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!