Role of oncogenes and tumor suppressor genes in multistage carcinogenesis.

J Invest Dermatol

Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.

Published: November 1994

The introduction of the techniques of molecular biology as tools to study skin carcinogenesis has provided more precise localization of biochemical pathways that regulate the tumor phenotype. This approach has identified genetic changes that are characteristic of each of the specific stages of squamous cancer pathogenesis: initiation, exogenous promotion, premalignant progression, and malignant conversion. Initiation can result from mutations in a single gene, and the Harvey allele of the ras gene family has been identified as a frequent site for initiating mutations. Heterozygous activating mutations in c-rasHa are dominant, and affected keratinocytes hyperproliferate and are resistant to signals for terminal differentiation. An important pathway impacted by c-rasHa activation is the protein kinase C (PKC) pathway, a major regulator of keratinocyte differentiation. Increased activity of PKC alpha and suppression of PKC delta by tyrosine phosphorylation contribute to the phenotypic consequences of rasHa gene activation in keratinocytes. Tumor promoters disturb epidermal homeostasis and cause selective clonal expansion of initiated cells to produce multiple benign squamous papillomas. Resistance to differentiation and enhanced growth rate of initiated cells impart a growth advantage when the epidermis is exposed to promoters. The frequency of premalignant progression varies among papillomas, and subpopulations at high risk for progression have been identified. These high-risk papillomas overexpress the alpha 6 beta 4 integrin and are deficient in transforming growth factor beta 1 and beta 2 peptides, two changes associated with a very high proliferation rate in this subset of tumors. The introduction of an oncogenic rasHa gene into epidermal cells derived from transgenic mice with a null mutation in the TGF beta 1 gene have an accelerated rate of malignant progression when examined in vivo. Thus members of the TGF beta gene family contribute a tumor-suppressor function in carcinogenesis. Accelerated malignant progression is also found with v-rasHa transduced keratinocytes from skin of mice with a null mutation in the p53 gene. The similarities in risk for malignant conversion by initiated keratinocytes from TG beta 1 and p53 null geneotypes suggest that a common, growth-related pathway may underly the tumor-suppressive functions of these proteins in the skin carcinogenesis model.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1523-1747.ep12399255DOI Listing

Publication Analysis

Top Keywords

skin carcinogenesis
8
premalignant progression
8
malignant conversion
8
gene family
8
rasha gene
8
initiated cells
8
mice null
8
null mutation
8
tgf beta
8
beta gene
8

Similar Publications

The toxicokinetics of nitrosamines remain a mystery to this day, though it appears that the role of nitrosamines in potentiating the generation of mutations required for the onset of skin cancer continues to be a significant concern. Nitrosamines are mutagens, genotoxic substances, and mediators of phototoxicity/carcinogenicity, whose long-term daily usage, in the context of polypharmacy, can result in the parallel appearance of heterogeneous forms of skin cancer: keratinocytic and melanocytic. But a number of clinical observations suggest that it is the nitrosamines that potentiate the multiple occurrences of skin cancer over the years, or recurrences of skin cancer localized in areas exposed to solar radiation.

View Article and Find Full Text PDF

Background: The skin, with its robust structural integrity and advanced immune defense system, serves as a critical protective barrier against environmental toxins and carcinogenic compounds. Despite this, it remains vulnerable to the harmful effects of certain hazardous agents.

Objectives: This study aimed to investigate the chemopreventive potential of β-caryophyllene (BCP) in mitigating 7,12-dimethylbenz[a]anthracene (DMBA)-induced skin carcinogenesis, focusing on the modulation of apoptosis and PI3K/AKT signaling pathways.

View Article and Find Full Text PDF

Introduction: Inflammasomes NLRP1 (NLR family pyrin domain containing 1) and NLRP3 are pivotal regulators of the innate immune response, activated by a spectrum of endogenous and exogenous stressors, including ultraviolet radiation (UVR). The precise molecular mechanisms underlying the activation of these inflammasomes remain unclear. Furthermore, the involvement of interleukin-33 (IL-33) in UVR-induced skin carcinogenesis is not well defined.

View Article and Find Full Text PDF

Osimertinib as a neoadjuvant therapy in resectable EGFR-mutant non-small cell lung cancer: a real-world, multicenter retrospective study.

Transl Lung Cancer Res

December 2024

Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China (UESTC), Chengdu, China.

Background: Osimertinib, a third-generation tyrosine kinase inhibitor (TKI), has been authorized for use in patients with epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC). This study aimed to evaluate the effectiveness and safety of neoadjuvant osimertinib in individuals with resectable locally advanced NSCLC harboring EGFR mutation.

Methods: Ten centers located in mainland China took part in a single-arm, real-world, multicenter retrospective study (registration number: ChiCTR2100049954).

View Article and Find Full Text PDF

Background: Immunosuppression might increase the risk of skin cancer in organ transplant recipients (OTRs), with azathioprine (AZA), exerting a fundamental role in the carcinogenesis of those tumors. This systematic review and meta-analysis aims to address the risk of developing malignant skin neoplasms in OTRs undergoing immunosuppression with AZA.

Methods: PubMed, Cochrane and Embase were searched for studies with OTRs who have a treatment regimen involving Azathioprine therapy after transplantation and that analyzed the emergence of skin neoplasia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!