AI Article Synopsis

Article Abstract

Transcriptional regulation of the progesterone receptor gene involves induction by estrogens and down-regulation by progestins, retinoic acid, and AP-1 proteins. We have previously identified an intragenic (+698/+723) estrogen-responsive element present in the progesterone receptor gene, which binds the estradiol receptor and mediates estrogen and 4-OH tamoxifen induction. Progesterone receptor gene expression was equally stimulated by estradiol and 4-OH tamoxifen in the presence of a NH2 terminally deleted estrogen receptor mutant lacking activation function 1, suggesting that activation function 2 was the predominant activation domain. This was confirmed by the lack of activity of an estrogen receptor mutant deleted of activation function 2. Repression by progestins, retinoic acid, and AP-1 was mediated by the same estrogen responsive element although retinoic and progesterone receptors as well as AP-1 proteins did not bind to this element. Repression by these proteins appears to involve different transactivating regions of the estrogen receptor. Repression by retinoic receptors involved only activation function 2 whereas repression by progesterone receptor and AP-1 necessitated both functional domains. Since these proteins act without directly contacting the DNA, it seems likely that repression may be achieved by protein-protein interactions among different domains of the estrogen receptor and/or the transcriptional machinery.

Download full-text PDF

Source

Publication Analysis

Top Keywords

progesterone receptor
20
receptor gene
16
estrogen receptor
16
activation function
16
progestins retinoic
12
retinoic acid
12
acid ap-1
12
receptor
10
ap-1 proteins
8
4-oh tamoxifen
8

Similar Publications

Prognostic value of adjuvant chemotherapy for hormone receptor-negative T1a and T1bN0M0 breast cancer patients.

Sci Rep

January 2025

Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China.

The benefit of adjuvant chemotherapy (CT) for hormone receptor-negative T1a and T1bN0M0 breast cancer remains uncertain. Our study was to explore prognostic value and identify candidates of adjuvant CT for these patients. The data of hormone receptor-negative T1a and T1bN0M0 breast cancer patients were extracted from the Surveillance, Epidemiology, and End Results (SEER) database from 2010 to 2015.

View Article and Find Full Text PDF

Aims: Progesterone receptor (PR) is a crucial prognostic marker in breast cancer. However, achieving consistent results in PR immunohistochemistry (IHC) remains challenging due to the lack of well-defined low-positive controls. This study aimed to identify benign tissues with consistent low-level PR expression to serve as ideal controls for IHC.

View Article and Find Full Text PDF

Omega-3 fatty acids supplementation from late pregnancy to early lactation attenuates the endocannabinoid system and immune proteome in preovulatory follicles and endometrium of Holstein dairy cows.

J Dairy Sci

January 2025

Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel. Electronic address:

Activation of the endocannabinoid system (ECS) elicits negative effects on the reproductive system in mammals. Omega-3 (n-3) fatty acid (FA) supplementation lowers ECS activation and has anti-inflammatory effects. Thus, we hypothesized that supplementing cows with n-3 FA will downregulate components of the ECS and immune system in preovulatory follicles and in the endometrium.

View Article and Find Full Text PDF

RANK pathway has attracted increasing interest as a promising target in breast cancer, given the availability of denosumab, an anti-RANKL drug. RANK signaling mediates progesterone-driven regulation of mammary gland development and favors breast cancer initiation by controlling mammary cell proliferation and stem cell fate. RANK activation promotes luminal mammary epithelial cell senescence, acting as an initial barrier to tumorigenesis but ultimately facilitating tumor progression and metastasis.

View Article and Find Full Text PDF

Hormone Signaling in Breast Development and Cancer.

Adv Exp Med Biol

January 2025

Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Hormones control normal breast development and function. They also impinge on breast cancer (BC) development and disease progression in direct and indirect ways. The major ovarian hormones, estrogens and progesterone, have long been established as key regulators of mammary gland development in rodents and linked to human disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!