The retinoblastoma gene product (pRB) constrains cell proliferation by preventing cell-cycle progression from the G1 to S phase. Its growth-inhibitory effects appear to be reversed by hyperphosphorylation occurring during G1. This process is thought to involve G1 cyclins and cyclin-dependent kinases (cdks). Here we report that the cell cycle-dependent phosphorylation of mammalian pRB is faithfully reproduced when it is expressed in Saccharomyces cerevisiae. As is the case in mammalian cells, this phosphorylation requires an intact oncoprotein-binding domain and is inhibited by a negative growth factor, in this case a mating pheromone. Expression of pRB in cln (-) mutants indicates that specific combinations of endogenous G1 cyclins, Cln3 and either Cln1 or Cln2 are required for pRB hyperphosphorylation in yeast. Moreover, expression of mammalian G1 cyclins in cln (-) yeast cells indicates that the functions of Cln2 and Cln3 in pRB hyperphosphorylation can be complemented by human cyclin E and cyclin D1, respectively. These observations suggest a functional heterogeneity among G1 cyclin-cdk complexes and indicate a need for the involvement of multiple G1 cyclins in promoting pRB hyperphosphorylation and resulting cell-cycle progression.

Download full-text PDF

Source
http://dx.doi.org/10.1101/gad.8.15.1759DOI Listing

Publication Analysis

Top Keywords

prb hyperphosphorylation
12
cell-cycle progression
8
prb
6
collaboration cyclins
4
cyclins functional
4
functional inactivation
4
inactivation retinoblastoma
4
retinoblastoma protein
4
protein retinoblastoma
4
retinoblastoma gene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!