Heme proton resonances have been assigned for ferricytochromes c-551 isolated from four distinct species of bacteria. While the available structure information indicates that the four cytochromes have very similar conformations in solution, including the chirality of the methionine ligand sulfur bond, the chemical shifts of the paramagnetically shifted resonances are surprisingly different, more so than has been previously reported for a homologous series of ferricytochromes. The resonances are contrasted in terms of chemical shift and the temperature dependence of the shift, which gives rise to a very strong anti-Curie effect for some specific protons. Non-methyl heme resonances do display an approximately conserved set of chemical shifts, but the heme methyl groups demonstrate a wide range of values. The 12(1) heme methyl group is always the highest frequency heme methyl, but the relative positions of the other methyl groups may change. The 7(1) heme methyl group always displayed strong anti-Curie behavior, while the 12(1) methyl group displayed normal Curie behavior. The behavior of the other methyl groups was variable. Possible reasons for the range of observations will be discussed. In spite of their NMR differences, all the ferricytochromes c-551 demonstrated comparable electron-transfer rates to a membrane-bound cytochrome reductase system.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1994.tb20037.xDOI Listing

Publication Analysis

Top Keywords

heme methyl
16
methyl groups
12
methyl group
12
ferricytochromes c-551
8
chemical shifts
8
strong anti-curie
8
group displayed
8
methyl
7
heme
6
characteristics paramagnetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!