Magnesium, an essential metal that is important in the normal functioning of DNA, has been shown to interact with some of the toxic heavy metals in respect to biochemical and molecular mechanisms and in altering the tumorigenic process. This study examined the influence of magnesium in combination with nickel and cadmium in respect to damage of the DNA molecule. The purpose of this study was to evaluate the influence of magnesium on the amelioration of the toxic metals nickel and cadmium in respect to sustaining DNA damage. Two types of lymphocytes were used, i.e., primary Fischer 344 rat splenocytes and AHH-1 TK+/-, a human B-lymphoblastoid cell line that has been spontaneously transformed. These cells were grown in either a magnesium-free or magnesium-supplemented RPMI 1640 medium that was specifically formulated for this study. A 2 x 2 factorial design was employed with magnesium and either nickel or cadmium serving as the two factors. The experimental groups were as follows: +Mg+Ni, +Mg-Ni, -Mg+Ni, -Mg-Ni, with cadmium alternating for the nickel in the subsequent studies. The nickel or cadmium was added at a concentration of 50 mumol/L. The presence of double-stranded DNA was determined in each of the respective treatment groups with the two types of cell lines. Based on the results of this study, nickel is not directly toxic to DNA, whereas cadmium produces damage directly on the DNA molecule.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00756493 | DOI Listing |
Environ Pollut
January 2025
Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, State Key Lab of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China. Electronic address:
A major proportion of metal contaminants in aquatic environments is bound to suspended particulate matter (SPM), yet environmental monitoring typically focuses on dissolved metals, with the filtration step removing SPM. This step may inadvertently hide the potential risks posed by particulate metals. In this study, we used stable isotope tracers to quantify the contributions of SPM-bound metals to the bioaccumulation of nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in Ruditapes philippinarum, a widely distributed clam crucial to global aquaculture.
View Article and Find Full Text PDFFoods
January 2025
Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Balcali, Türkiye.
This study investigates the seasonal variations in the elemental composition of five economically valuable fish species from Bozcaada, North Aegean: red seabream (), gilthead seabream (), saddled seabream (), white seabream (), and common dentex (), with a focus on both essential minerals and toxic metals. Fish samples ( = 10 per species per season) were collected across four seasons, and their weights and lengths were recorded. The concentrations of elements such as calcium, potassium, magnesium, phosphorus, copper, iron, manganese, zinc, chromium, nickel, selenium, cadmium, and mercury were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China. Electronic address:
Urban rivers are one of the main water sources for local residents. However, the rapid industrialization and urbanization caused serious heavy metals pollution in urban rivers, which posed harmful impact on human health and ecosystem. In this study, 134 sediment samples were collected from urban rivers in a typical Economic and Technological Development Zone (ETDZ) to evaluate the contamination status, ecological risk, biotoxicity, and potential source of 8 heavy metals including arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), plumbum (Pb), and zinc (Zn).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
Aquatic toxicology, as a result of industrial and agrieqcultural effluences, has become a global concern impacting not only the well-being of aquatic organisms but human health as well. The current study evaluated the impact of four toxic trace elements (TTEs) Cadmium (Cd), copper (Cu), lead (Pb), and nickel (Ni) in three organs (liver, gills, and muscles) of five fish species viz, Rita rita, Sperata sarwari, Wallago attu, Mastacembelus armatus, and Cirrhinus mrigala collected from right and left banks of Punjnad headworks during winter, spring, and summer. We investigated the accumulation (mg/kg) of these TTEs in fish in addition to the human health risk assessment.
View Article and Find Full Text PDFToxics
December 2024
Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
There is concern over potential toxic elements (PTEs) impacting river ecosystems due to human and industrial activities. The river's water, sediment, and aquatic life are all severely affected by the release of chemical and urban waste. PTE concentrations in sediment, water, and aquatic species from river ecosystems are reported in this review.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!