The response of signal intensity to transient (on-off) motor and sensory stimulation has been well studied; however, the dependence of signal response on the duration of stimulus requires further characterization. The objective of this study was to determine the time course of signal response in the human visual cortex to prolonged, sustained stimulation and to examine possible contributory physiologic mechanisms. Nine healthy volunteers underwent magnetic resonance (MR) imaging during sustained visual stimulation with light-proof binocular goggles. With photic stimulation, activation was observed in all subjects as an increase in signal intensity of the visual cortex. With sustained stimulation, a gradual decrease in signal intensity was subsequently observed, with progression toward an apparent steady state. Correlation with positron emission tomographic, MR spectroscopic, and visual evoked-potential data suggests that the initial uncoupling of cerebral blood flow and oxidative metabolism with a neuronal activation burst may represent a transient phenomenon. This quick-response phase may proceed to an equilibrium coupling of flow and oxidative metabolism, with a gradual normalization of venous deoxyhemoglobin levels and signal intensity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.1880040405DOI Listing

Publication Analysis

Top Keywords

signal intensity
16
signal response
12
sustained stimulation
12
visual cortex
12
human visual
8
flow oxidative
8
oxidative metabolism
8
stimulation
6
signal
6
visual
5

Similar Publications

Sleep need accumulates during waking and dissipates during sleep to maintain sleep homeostasis (process S). Besides the regulation of daily (baseline) sleep amount, homeostatic sleep regulation commonly refers to the universal phenomenon that sleep deprivation (SD) causes an increase of sleep need, hence, the amount and intensity of subsequent recovery sleep. The central regulators and signaling pathways that govern the baseline and homeostatic sleep regulations in mammals remain unclear.

View Article and Find Full Text PDF

Background: While the effects of sleep deprivation on cognitive function are well-documented, its impact on high-intensity endurance performance and underlying neural mechanisms remains underexplored, especially in the context of search and rescue operations where both physical and mental performance are essential. This study examines the neurophysiological basis of sleep deprivation on high-intensity endurance using electroencephalography (EEG). In this crossover study, twenty firefighters were subjected to both sleep deprivation (SD) and normal sleep conditions, with each participant performing endurance treadmill exercise the following morning after each condition.

View Article and Find Full Text PDF

We present a rare case of a patient with co-occurring exercise-induced acute kidney injury (AKI) and rhabdomyolysis. A 67-year-old man was referred to our department with AKI. Five days before referral, the patient had sudden-onset loin pain while banging and kicking on a door in a holding cell at a police station.

View Article and Find Full Text PDF

Catechins in tea, as promoters of human health, have attracted widespread attention. Herein, a dual-signal mode (colorimetric and fluorescence) sensor array for catechin species fingerprinting was built based on PtNi bunched nanoparticle (PtNi-BNP)--phenylenediamine (OPD)-HO system. PtNi-BNPs catalyze the reaction between OPD and HO to produce oxidized OPD (oxOPD) with both colorimetric (yellow) and fluorescent properties.

View Article and Find Full Text PDF

Quantitative profiling and mapping of small molecules by laser desorption/ionization mass spectrometry: combinations of carbon-based nano-matrices and sample preparation protocols.

Analyst

January 2025

Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China.

The choices of matrices and protocols for sample deposition are critical factors, which impact each other in the matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). Previous reports on MALDI MS matrices have only compared their performances in terms of their MS signal intensities and provided optical microphotos or MALDI MS images of sample spots but typically lacked quantitative evaluation. Therefore, there is an urgent need to develop a multivariate model to evaluate the performance of different combinations of matrices and sample protocols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!