Transcription of nuclear lhc genes has been shown to be under circadian clock control in angiosperms. but many aspects of this regulation have not been elucidated. Unicellular organisms, such as the green alga Chlamydomonas reinhardtii, offer significant advantages for the study of cellular clocks. Therefore, we have asked whether lhc gene expression is regulated by a circadian clock in C. reinhardtii. The mRNA for a photosystem I chlorophyll a/b apoprotein showed a strong diurnal rhythm in cells growing under 12 h/12 h light/dark (LD) cycles; the mRNA accumulated and then declined during the light period reaching very low levels at mid-dark. A similar diurnal pattern was documented for rbcS mRNA. In LD-grown cells shifted to continuous light, the ca. 24 h rhythm of lhca1 mRNA continued for at least 2 cycles. In LD-grown cells shifted to continuous darkness the rhythm of lhca1, but not rbcS2, mRNA also continued, although at lower absolute levels than in LD-grown cells. Also, in the cells shifted to continuous dark, the lhca1 mRNA rhythm persisted in the absence of significant cell division. Pulse-labelling with 32PO4 and sensitivity to actinomycin D demonstrated that control of lhca1 (and rbcS) is mainly transcriptional. However, it was also shown that the half-life of lhca1 mRNA (and rbcS2) is short (1-2 h) and may also vary somewhat during a cycle. We conclude that a cellular, circadian clock regulates lhca1 transcription in C. reinhardtii.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00013743 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!