The ability to routinely assess mechanical properties of large blood vessels, like the aorta, before an aneurysm or rupture occurs, could benefit diagnostic and therapeutic procedures and save lives. In this study, images of the wall area and intravascular pressure (IP) responses of in vitro rat aorta were recorded during swept frequency pressure input (2-200 Hz; +/- 10 mm Hg) superimposed on mean pressures from 20 to 160 mm Hg. Data analysis included Fast Fourier transform (FFT) of input and responses. Wall and IP responses were underdamped with respective resonance frequencies (Wn) that varied as a function of mean input pressure and the nonlinear nature of wall elasticity. Results indicated closely coupled wall and IP responses and suggested that the IP response may be an adequate index of wall elasticity without need of a direct measure of wall displacement. We considered results to be a key step towards development of a clinical tool which would facilitate analysis of mechanical properties of in vivo conducting vessels.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mechanical properties
12
intravascular pressure
8
wall responses
8
wall elasticity
8
wall
7
harmonic analysis
4
analysis intravascular
4
pressure
4
pressure response
4
response arterial
4

Similar Publications

Incorporation of anthocyanin into zein nanofibrous films by electrospinning: Structural characterization, functional properties, and ammonia color-responsiveness.

Food Chem X

January 2025

Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China.

Green electrospinning for the production of freshness-indicating labels, employing entirely natural biopolymers and pigments, holds significance in the development of intelligent food packaging. This study aimed to prepare zein (Z) fibrous film (FF) incorporated with varying concentrations of anthocyanin (A; 0-0.5 %) through green electrospinning.

View Article and Find Full Text PDF

Hybrid additive manufacturing for Zn-Mg casting for biomedical application.

In Vitro Model

December 2024

Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, University Park, PA USA.

Zinc (Zn) and its alloys have been the focus of recent materials and manufacturing research for orthopaedic implants due to their favorable characteristics including desirable mechanical strength, biodegradability, and biocompatibility. In this research, a novel process involving additive manufacturing (AM) augmented casting was employed to fabricate zinc-magnesium (Zn-0.8 Mg) artifacts with surface lattices composed of triply periodic minimal surfaces (TPMS), specifically gyroid.

View Article and Find Full Text PDF

The potential of epoxy-graphene oxide (GO) nanocomposites to improve the mechanical characteristics of conventional epoxy resins is causing them to gain prominence. This makes them appropriate for advanced engineering applications, including structural materials, automotive, and aerospace. This study aimed to develop an epoxy/GO composite with improved mechanical properties through synthesizing epoxy/GO samples with varying GO content (from 0.

View Article and Find Full Text PDF

Soft Artificial Synapse Electronics.

Research (Wash D C)

January 2025

Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA.

Soft electronics, known for their bendable, stretchable, and flexible properties, are revolutionizing fields such as biomedical sensing, consumer electronics, and robotics. A primary challenge in this domain is achieving low power consumption, often hampered by the limitations of the conventional von Neumann architecture. In response, the development of soft artificial synapses (SASs) has gained substantial attention.

View Article and Find Full Text PDF

This study aimed to evaluate the impact of different manipulation methods and storage environments on the microstructural, chemical, and mechanical properties of calcium-enriched mixture (CEM) cement. Four sample groups were examined, including nondried (ND-I) and dried (D-I) groups placed directly in an incubator, dried samples stored in phosphate-buffered saline (PBS) (D-P), and dried samples stored in distilled water (D-W). Various analyses, including Vickers microhardness, compressive strength, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) were conducted after incubating the samples for 7 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!