Use of supercritical CO2 for bone delipidation.

Biomaterials

Institut National des Sciences Appliquées, Département de génie biochimique et alimentaire, UA CNRS-540, Toulouse, France.

Published: July 1994

Supercritical carbon dioxide was used for bone delipidation. It appeared that this technology is very efficient since supercritical CO2 is able to diffuse into microporous solids much better than liquids and that it has a good solvent capacity for lipids. This extraction is the ideal first step of any bone processing because microporosity of bone tissue becomes much more accessible, which may enhance osteoconduction once implanted. Moreover, it is safe since it involves no toxic chemical and is potentially usable with allografts as well as xenografts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0142-9612(94)90162-7DOI Listing

Publication Analysis

Top Keywords

supercritical co2
8
bone delipidation
8
bone
4
co2 bone
4
delipidation supercritical
4
supercritical carbon
4
carbon dioxide
4
dioxide bone
4
delipidation appeared
4
appeared technology
4

Similar Publications

Supercritical CO modified by polar solvents can extract a wide variety of polar and non-polar chemical components compared to conventional methods. The current study aims to extract Rivas (Rheum ribes) flower using the ethanol modified supercritical CO (SCO-EOH) method; analyze its chemical compounds and bioactivity, encapsulate the extract in maltodextrin, gum-Arabic (GA), and their combination (GA + MD) using the spray drying method and investigate the differences among microparticles using Principal Component Analysis (PCA). The Rivas extract obtained by the SCO-EOH method was a rich source of unsaturated fatty acids (mainly linoleic acid: 57.

View Article and Find Full Text PDF

Supercritical CO-Induced Chemical Pressure on BaZrO for Room-Temperature Ferromagnetism.

Small

January 2025

Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, P. R. China.

The modulation of intrinsic magnetic properties of materials is of great importance for the exploration of new materials in the fields of information storage and spintronics. Herein, room-temperature ferromagnetic properties in BaZrO are successfully induced using supercritical CO. The highest saturation magnetization intensity of BaZrO is observed at 16 MPa, with a value of 0.

View Article and Find Full Text PDF

Additive-free 3D-printed nanostructured carboxymethyl cellulose aerogels.

Int J Biol Macromol

January 2025

Mines Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, Rue Claude Daunesse, 06904 Sophia Antipolis, France. Electronic address:

3D printing of polysaccharide solutions is widely recognized as a highly promising method in the biomedical field for achieving complex customized shapes. One of the main challenges is in selecting conditions, in particular, the rheological properties of the system, to retain the printed shape. For the first time, the direct ink writing (DIW) is successfully applied to neat carboxymethyl cellulose (CMC) solutions without any additives or crosslinking, only by adjusting solutions' rheological properties.

View Article and Find Full Text PDF

Awakening n-π* electron transition in structurally distorted g-CN nanosheets via hexamethylenetetramine-involved supercritical CO treatment towards efficient photocatalytic H production.

J Colloid Interface Sci

January 2025

International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), Xi'an 710049 PR China.

Graphitic carbon nitride (g-CN) has been regarded as highly potential photocatalyst for solar energy utilization. However, the restricted absorption of visible light for pristine g-CN significantly limits the solar-light-driven chemical reaction efficiency. Herein, structurally distorted g-CN nanosheets with awakened n-π* electron transition were successfully synthesized through hexamethylenetetramine (HMTA)-involved supercritical CO (scCO) treatment and following pyrolysis of melamine precursor.

View Article and Find Full Text PDF

One-step high-pressure and high-temperature direct aqueous mineral carbonation of tailings derived from mining of Platinum Group Metals in South Africa requires a fundamental understanding of the reactivity of the most dominant mineral phases, i.e. pyroxene and plagioclase (66 wt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!